Water Management for Unconventional Oil and Gas Production

AWWA/NWRA Workshop
John D. Wind, Ph.D.
CEO, Partners in Sustainability Integration
windjohn@integratesustainability.com
October 29, 2015
Overview

- Water use and scarcity in shale development
- Disadvantaged water resources for fracturing
- Water storage
- Groundwater protection
- Water management and treatment
 - Source water
 - Flowback and produced water
 - Water quality
 - Treatment technologies
- Wastewater disposal
- Opportunities for optimization
 - Reusing water between operators
 - Drilling and water infrastructure
- Water costs
- Conclusions
Hydraulic Fracturing

- High-pressure water-based fluid used to fracture low-permeability hydrocarbon formations
- Fracture fluid chemistry has changed significantly over the last 10 years.
- Evolution in water management shows how recycle and reuse can be utilized
Water Use in Shale Development

- Water use varies significantly by shale play
- Complex water management

USGS, Water Resources Res., 2015
U.S. is now world’s largest oil and natural gas producer.
Water Scarcity Assessment

• Operators should understand water risks by assessing water scarcity
• Tools for modeling water stress. e.g.:
 – Aqueduct (WRI)
 – Global Water Tool (WBCSD)
• Water management plans should be informed by local water stresses in the development area
• Incorporate impacts of climate change and demand growth in assessing water resources
• Groundwater sustainability: are aquifers being over-drafted?
• Stakeholder engagement is critical for understanding water use in the watershed and understanding the value of water to stakeholders
Hydraulic Fracturing

- Water quality for fracturing has moved towards much higher TDS levels over the past 10 years
- Typical water use is 4-6 million gal per well
- Additives: sand (proppant), friction reducer, thickener, corrosion and scale inhibitor, acids and antimicrobials
- Injection fluid is 99% water and sand, 1% chemicals
 - Water can be highly saline
 - Match water quality with chemicals

This picture is changing
- Water reuse (internally and externally)
- Salt recovery
Life-Cycle Water Use

- Hydraulic fracturing accounts for greatest water use in well life-cycle

Use of Disadvantaged Water Resources

• Drivers
 – Water scarcity
 – Truck traffic
 – Supply reliability (e.g. permits)
 – Public relations

• Treated flowback water
 – Common for Marcellus shale
 – Not common where injection well capacity is plentiful

• Brackish groundwater
 – Drought-proof water resource
 – Less competition and social/environmental impacts than freshwater

• Acid Mine Drainage water
 – PA SB 875 to incentivize (approved 6/2015)

• Treated municipal wastewater
 – Pioneer in Odessa, TX (to be built)
 – Shell in British Columbia
 – Anadarko in Aurora, CO

Brackish water resources, USGS,
Water Treatment/Management

- Water management strategy varies greatly between unconventional resources plays
- Cost is usually dominated by transportation and treatment
- Mobile treatment units are common due to dynamic nature of water treatment needs (in space and time)
Source Water Treatment

• Filtration
 – Remove TSS
 – Remove sulfate reducing bacteria and acid producing bacteria
 – Reduces scaling and corrosion potential
 – Reduces chemical demands in fracturing
• Aeration: prevent H_2S formation
• Biocides: kill bacteria
• ClO_2: remove bacteria, sulfides, particulates and insolubles
• Hardness removal (ion exchange)-e.g. Boron can cause problems with crosslinked gel formulation
• Sulfate removal
 – May cause scaling with Ba and Sr from formation
Water Storage: Tanks and Pits

• PA Department of Environmental Protection announced plans to ban temporary waste pits at Marcellus and Utica shale gas well sites (3/2015)
• Impoundments are prone to leaking, with potential groundwater contamination
• Impoundments also have VOC emissions and have negative impacts on wildlife
• Vertical tanks reduce the environmental footprint of well development
Groundwater Protection

- Shale formations are much deeper than drinking water aquifers
- Drinking water aquifer contamination can occur from surface spills, migration pathways in the well or sub-surface fractures or other wells
- Proper well design and mechanical integrity are critical
- Failure of the cement or casing or completion assembly surrounding the wellbore poses a risk to water supplies
- Cementing is critical
 - Proper cement placement and quality
 - Fully cemented surface casing that extends through the base of drinking water resources is critical
- If the annulus is improperly sealed, gases and fracturing fluids can access drinking water aquifers

Source: EPA, 2015
Groundwater Protection

- Location of offset well relative to fracked well determines the likelihood of a “frac hit” (well communication incident) - migration pathway to drinking water
 - Frac hits most commonly occur on multi-well pads with inadequate spacing
 - Induced fractures must not intersect with existing fractures or permeable zones
- Older wells have more integrity problems...stresses from re-fracturing etc. (aging of steel casing and cement)
- Fluid migration along natural faults/fractures to drinking water zone is unlikely
- Monitoring
 - Baseline and post-completion groundwater testing (req’d in CO & WY)

Source: EPA, 2015
Flowback Water Quality Variability

Concentrations in mg/L

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicarbonate</td>
<td>1,010</td>
<td>717</td>
<td>1,190</td>
<td>259</td>
<td>183</td>
<td>183</td>
<td>76</td>
<td>366</td>
<td>366</td>
</tr>
<tr>
<td>Chloride</td>
<td>19,400</td>
<td>29,400</td>
<td>10,000</td>
<td>6,290</td>
<td>59,700</td>
<td>87,700</td>
<td>153,000</td>
<td>96,400</td>
<td>58,300</td>
</tr>
<tr>
<td>Sulfate</td>
<td>34</td>
<td>0</td>
<td>88</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>670</td>
<td>749</td>
</tr>
<tr>
<td>Calcium</td>
<td>630</td>
<td>1,058</td>
<td>294</td>
<td>476</td>
<td>7,283</td>
<td>10,210</td>
<td>20,100</td>
<td>4,131</td>
<td>2,573</td>
</tr>
<tr>
<td>Magnesium</td>
<td>199</td>
<td>265</td>
<td>145</td>
<td>50</td>
<td>599</td>
<td>840</td>
<td>1,690</td>
<td>544</td>
<td>344</td>
</tr>
<tr>
<td>Barium</td>
<td>49.4</td>
<td>94.8</td>
<td>6.42</td>
<td>6.24</td>
<td>278</td>
<td>213</td>
<td>657</td>
<td>1.06</td>
<td>5.10</td>
</tr>
<tr>
<td>Strontium</td>
<td>107</td>
<td>179</td>
<td>45</td>
<td>74</td>
<td>2,087</td>
<td>2,353</td>
<td>5,049</td>
<td>178</td>
<td>112</td>
</tr>
<tr>
<td>Iron</td>
<td>5</td>
<td>26</td>
<td>8</td>
<td>14</td>
<td>27</td>
<td>3</td>
<td>68</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>Silica</td>
<td>34</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>9</td>
<td>45</td>
<td>73</td>
<td>80</td>
<td>95</td>
<td>66</td>
</tr>
<tr>
<td>Potassium</td>
<td>192</td>
<td>273</td>
<td>79</td>
<td>86</td>
<td>977</td>
<td>1,559</td>
<td>2,273</td>
<td>2,232</td>
<td>1,439</td>
</tr>
<tr>
<td>Sodium</td>
<td>10,960</td>
<td>16,450</td>
<td>5,985</td>
<td>3,261</td>
<td>26,780</td>
<td>39,990</td>
<td>61,400</td>
<td>54,690</td>
<td>32,600</td>
</tr>
<tr>
<td>TDS</td>
<td>33,300</td>
<td>49,300</td>
<td>18,200</td>
<td>10,800</td>
<td>98,600</td>
<td>144,000</td>
<td>252,000</td>
<td>160,000</td>
<td>97,700</td>
</tr>
<tr>
<td>TSS</td>
<td>57</td>
<td>246</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>12</td>
<td>32</td>
<td>120</td>
<td>13,762</td>
</tr>
<tr>
<td>TOC</td>
<td>89</td>
<td>64</td>
<td>133</td>
<td>180</td>
<td>218</td>
<td>70</td>
<td>43</td>
<td>266</td>
<td>235</td>
</tr>
</tbody>
</table>

J. Häggström, Halliburton, 2011

- Huge variability in water quality from different wells
- Treatment technology needs to be robust to handle variations in water quality
Time and Location Dependence

Flowback water water quality and flowrate for 3 Marcellus shale wells (Hayes, 2009)

- Large variability in TDS over first 90 days
- TDS of initial flowback does not predict long-term TDS trends
- Injection volume not correlated with flowback volumes
- Logistics are challenging with such variability
Water Management Drivers

• Key drivers
 – Environmental sensitivity
 – Water availability and quality
 – Wastewater disposal options
 – Quality of flowback water
 – Volume of water required for fracturing and flowrates of flowback and produced water
 – Regulations and permits

• Economic analysis
 – Model water management scenarios to determine lowest cost alternatives
 – Account for environmental and social impacts in analysis
 – Risk management – consider liabilities and regulatory impacts of alternatives
Water Treatment Technologies

- Constituents of concern: TSS, metals, organics, radionuclides (NORM), frac fluid additives, TDS
- Hydrocarbon removal: hydrocyclones, DAF, cartridge filtration, nutshell filtration, biological treatment
- Clarification
 - Chemical precipitation & settling
 - Filtration and membrane separation
- Electrocoagulation: remove solids, organics, bacteria and heavy metals
- Microbiological control: biocides, UV, ozone
- Softening: ion exchange, nanofiltration
- Desalination
 - Reverse Osmosis (up to ~ 50,000 ppm TDS)
 - Mechanical Vapor Recompression, Multi-Effect Distillation, Forward Osmosis, Membrane Distillation, Carrier Gas Extraction for brine concentration
 - Concentrated brine may have market value (e.g. drilling)
- Crystallization
 - Zero liquid discharge
 - Sell salt product
Reusing Water Between Operators

• Creating a market for water sourcing and reuse will facilitate efficiencies in the industry

• An example is Sourcewater
 – Start-up out of MIT
 – Web-based system for sourcing water, recycling water, and selling water

• Full-service water management companies handle sourcing, treatment, storage and disposal
 – Opportunity for these companies to share in costs of developing water infrastructure to service the industry

• Issues over liability must be managed
 – Texas HB 2767 shifts liability from producer to the recycler
 – Recycler is immune once water is sold to new producer
Wastewater Disposal

• POTW disposal used to be common but has been prohibited in PA and other places
• Wastewater disposal options include deepwell injection and dust suppression & deicing
 – Induced seismicity from injection into disposal wells
 – Env. concerns over land application
• May states prohibit brine transport in pipelines due to concerns over leaks and spills
• Wastewater pipelines used in North Dakota and recently approved in Texas
 – Reduce truck traffic
 – Must be monitored for leaks

Drilling and Water Infrastructure

- O&G well drilling should be planned with water infrastructure development
- Need to drill on leases scattered over a wide area to maintain them can lead to sub-optimal water management
- Burdening individual O&G development projects with water infrastructure costs may make them cost-prohibitive
 - Better to make strategic investments in water infrastructure development
 - Systems-level development planning
- Truck traffic is major impact of shale development
 - Cost
 - Environmental impact
 - Safety (accidents) and traffic congestion
 - Damage to roads
Water Costs

• Reduce water costs by
 – Reducing truck traffic
 – Water reuse
 – Optimizing schedule for water delivery, use and disposal (waiting times can be very expensive)

• Bakken: water recycling can save $200-400K/well (Halliburton)

<table>
<thead>
<tr>
<th>Producing Area</th>
<th>Total Water Cost ($/BBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakken</td>
<td>6-15</td>
</tr>
<tr>
<td>Eagle Ford</td>
<td>2-6</td>
</tr>
<tr>
<td>Permian Basin</td>
<td>3-8</td>
</tr>
<tr>
<td>Marcellus</td>
<td>4-20</td>
</tr>
<tr>
<td>Denver-Julesburg</td>
<td>4-8</td>
</tr>
</tbody>
</table>
Conclusions

• Industry has improved water management in many ways
• Shale development is highly dynamic
 – Opportunities for logistics optimization
 – Many treatment technologies to choose from: make fit for purpose
• Monitor groundwater quality and use well construction best practices
• Utilize frac tanks instead of pits for wastewater storage
• Many opportunities for water reuse
 – Water scarcity and disposal issues are drivers
 – Recover valuable materials (salts, metals, organics)
 – Emerging business models to reuse water between operators
• Opportunities to invest strategically in water infrastructure
 – Utilize pipelines instead of trucks
 – Centralized or mobile treatment facilities