

C715 -18 Addressing Non-Revenue Water with Static Meters

Martin Casillas Director of Sales, US West Kamstrup

AWWA C715 Standard

Cold-Water Meters— Electromagnetic and Ultrasonic Type, for Revenue Applications

Effective date: October 1, 2018. First edition approved by AWWA Board of Directors June 9, 2018. Approved by American National Standards Institute June 15, 2018.

AWWA C715 Standard

- Purpose: Define minimum requirements for potable cold water meters of the electromagnetic and ultrasonic type, in sizes 1/2 inch through 20 inches, in revenue applications.
- Scope:
 - Type I Residential and commercial applications where low flow accuracy is important
 - Type II Commercial applications where low flow is not primary concern
 - Application: Standard can guide purchase decisions by utilities and serve as a guide to manufacturing.

AWWA C715 Standard

- Materials standard defines acceptable material for
 - Main cases
 - Measuring chambers
 - Reflectors
 - Electrodes & transducers
 - Coupling tail pieces & nuts
 - Companion flanges
 - Minimum and maximum flow measurement
 - Standard alarms like leak, reverse flow, tamper
 - End of life battery alarm
 - Rate of flow indicator
 - Partial pipe warning
 - AWWA Manual M6 has been updated (2018) to include test parameters

Drivers for C715-18

- Rising water and wastewater service costs
- Resource scarcity
- Customer usage patterns changing
- Cutbacks in staffing, higher labor costs, retirement of skilled staff
- More sensitivity to looking at whole life cost of ownership
- Alignment of meter life with reading automation technology life

C715-18 Drivers

- Sources and Impacts of Non-Revenue Water
- Mechanical meters
- Electromagnetic & Ultrasonic meters and the C715 Standard
- Static meters and AMR/AMI
- What can you do at your utility?

What is Non-Revenue Water?

System Input Volume	Authorized Consumption	Pilled Authorized Concumption	Billed Metered Consumption
		Billed Authorized Consumption	Billed Unmetered Consumption
		Unbilled Authorized Consumption	Unbilled Unmetered Consumption
			Unbilled Metered Consumption
	Water Losses	Apparent Losses	Unauthorized Consumption
			Metering Inaccuracies
			Leakage on Transmission and Distribution Mains
		Real losses	Leakage and Overflows at Utility Storage Tanks
			Leakage on Service Connections up to Metering Points

Source: IWA Water Balance

Drivers for C715-18

- 1) Meters are old and under registering
- 2) AMR/AMI initiatives
- 3) Large meters are losing revenue
- 4) Advances in battery technology
- Greater frequency of measurement → better accuracy

Drivers for C715-18

- 6) Reduce meter maintenance
- 7) Customer service e.g., leak notifications
- 8) Water use efficiency
- 9) Reduce need for rate increases10) ROI

Why is Non-Revenue Water important?

- Public water systems face:
 - Aging infrastructure
 - Increasing regulatory requirements
 - Water supply and quality concerns
 - Inadequate resources
 - Aging workforce

Why is Non- Revenue Water important?

- Non-Revenue Water will never go away completely
- Metering inaccuracies are easily addressable
- Static meters are well suited for AMR/AMI
- Driver for C715-18

Why is Non-Revenue Water important?

- AWWA "Buried No Longer" report:
 - The national level of investment will double from about \$13 billion a year in 2010 to almost \$30 billion annually by the 2040s for replacement.
 - Small communities may find a steeper challenge ahead on water infrastructure.

Average water loss in US systems

16% Loss

75% Recoverable

Source: EPA

It's not just a water meter...

Water Meter

_ \$\$\$\$

Residential Meters - Mechanical

Mechanical Meter Types Most Commonly Installed

- Positive displacement (C700)
 - Nutating Disc
 - Oscillating Piston
- Velocity (C708)
 - Multi-Jet
- Turbine (C701)
- Compound (C702)
- New mechanical standards established to meet today's water needs

	C700/PD AWWA	C708/MJ AWWA	C702 AWWA Compound	C715-18 AWWA
5/8	.25-20	.25	N/A	.13
3/4	.50-30	.50	N/A	.15
1	.75-50	.75	N/A	.30
1 1/2	1-1/2 - 100	Intermedia	N/A	.60
2	2 -160		1⁄2 -200	1

Utah Water Research Laboratory Study

- Existing mechanical meters measure only a small percentage of flow below 1/4 GPM
- Measuring elements stop, lose accuracy, due to wear caused by water quality, debris, installation position.
- Loss of accuracy is a large contributor to non-revenue water.
- These losses add up over the years. Rate increase used to make up revenue shortfall
- Meter change-outs, proper meter sizing are sometimes used to solve revenue issues.

Cost of undetected leak

Flow (GPM)	CF/Hour	GPD	CF/month	G/month	\$/month
1/32	0.25	45	180	1,350	\$5.40
1/16	0.5	90	360	2,700	\$10.80
1/8	1	180	720	5,400	\$21.60
1/4	2	360	1,440	10,800	\$43.20
1/2	4	720	2,880	21,600	\$86.40
1	8	1,440	5,760	43,200	\$172.80

*Assume water cost about \$3/unit or \$4 per thousand gallon

Commercial Meters

Meter Types Most Commonly Installed

- Turbine Meters (C701)
 - One flow rotor
 - Parks and some irrigation
 - Mid to high flow range, no low flow measured
 - Billing meter, affects revenue
- Compound Meters (C702)
 - Turbine flow rotor with residential chamber
 - Apartments , commercial
 - All flow ranges
 - Billing meter, affects revenue
- Propeller Meters (C704)
 - Rotor shaft with rotor
 - Irritation or pump stations
 - Wide flow range with no low flow range
 - Consumption Meter

How they work – Electromagnetic Meters

- Employs Faraday's Law of magnetic induction to sense the flow of water
- Flow of conductive liquid (water)
- Through a magnetic field causes a voltage signal
- Sensed by electrodes located on the flow tube walls

Source: Veolia – North American Water Loss Conference 2017

How they work – Ultrasonic Meters

- Uses sound waves to determine the velocity of water flowing through a pipe
- Sends and receives ultrasonic waves between transducers
- Upstream and downstream in the pipe
- No flow same time between transducers
- With flow upstream waves slower than downstream
- Time increases with velocity E-Series
 Octave flowIQ 2100
 Mueller SSM
 MACH 10
 Sonata

Benefits of static meters

- Extreme low flow capability as low as 1/60 GPM
- Sustainable flow accuracy for life of meter
- 10-20 year warrantied life (dependent on manufacturer) vs 3-5 mechanical
- Higher resolution reading
- Data logging
- No moving parts, not susceptible to wear
 - Ideal for areas with high particulate
- Install meter at any angle, use for
 - submetering applications
- AMR/AMI ready

	•	

Mechanical vs. Solid State Meters

Source: Johnson Controls

Low flow registration and ROI

Meter Size	Mechanical	Min Flow (GPM)	Static	Min Flow (GPM)
5/8" x 3/4"	Nutating Disc	0.25	Ultrasonic	0.05
2 inch	Nutating Disc	1.5	Ultrasonic	0.5
4 inch	Turbo	6	Ultrasonic	0.75
4 inch	Compound	0.375	Mag	3.3

AWWA C715-18

- Most static meters are designed for AMR/AMI
- Integration with RF transmitters
- Built-in data logging and alarms
- Water temperature logging and alarms
- Low flow registration
- Low battery alarm
- Minimal or no field programming
- Minimal or no maintenance
- Meter life of up to 20 years

AWWA C715-18

- Both meter types can measure much lower flows than mechanical meters
- Both are well suited for AMR/AMI
- Higher price point for residential static meters
- Prices start to equalize around two inches and above
- Ultrasonic meters tend to be more compact, lower profile than mag meters

C715-18 Considerations

- Ultrasonic in residential applications less affected by noise
- Mag meters are a good solution in many larger meter applications
- Most manufacturers offer a choice of metal or composite flow tubes
- How well are the electronics protected against moisture intrusion?

C715-18 – How to approach

- Assess your current metering environment, test older meters
- Review C715 Standard
- Talk to manufacturers about their static meter offerings
- Test few meters in the field
- Important to remember test benches are designed for mechanical meter testing, not designed to pick up static meter low flow
- Talk to other utilities who have deployed static meters in their systems

C715-18

- Consider AMR/AMI include option for static meters in your RFQ/RFP specification
- Keep in mind that ultrasonic technology is not new. Keep in it has been used outside of U.S. to measure and bill customers
- Consider static meters as a means to help meet your conservation, customer service and revenue objectives.