PRESSURE REDUCING STATION & VALVE REPLACEMENT PROJECT

SAN DIEGO, CALIFORNIA

2013 ANNUAL FALL CONFERENCE SACRAMENTO, CA OCTOBER 2, 2013 **PSOMAS**

DISTRICT BACKGROUND

SFID established 1923 as irrigation district for local farmers

Currently serves 3 communities

- * City of Solana Beach
- * Fairbanks Ranch
- * Rancho Santa Fe
- * Exclusive area. High end homes

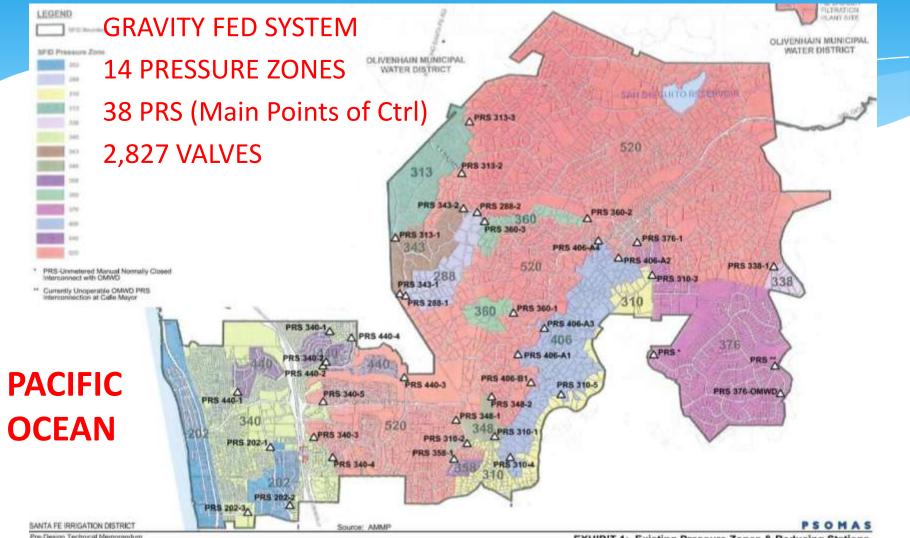
Approximately 21,300 customers on 10,200 acres of land

Average 13,500 ac-ft of potable water and 430 ac-ft recycled water/year

VICINITY MAP

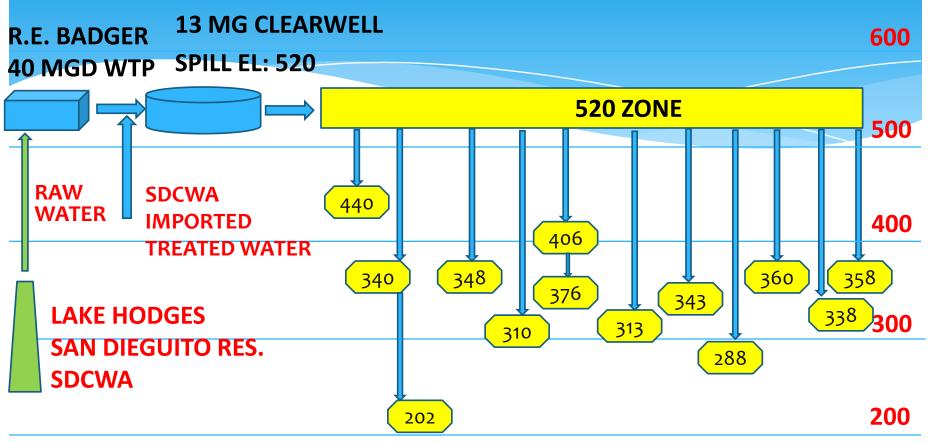
100 MILES TO LOS ANGELES

PROJECT LOCATION


35 MILES TO MEXICO

DOWNTOWN SAN DIEGO

DISTRICT MAP (2010)


WTP EL 520

Pre-Design Technical Memorandum

EXHIBIT 1: Existing Pressure Zones & Reducing Stations

FLOW CHART (2010)

14 TOTAL PRESSURE ZONES

38 PRESSURE REDUCING STATIONS

NUMEROUS INTERCONNECTIONS

PROJECT INFORMATION

PROJECT DESCRIPTION:

- Replace 75 backbone isolation valves
- Replace 43 PRS isolation valves
- * Install 30 new Air Release Valves (ARV)
- Replace 10 existing Pressure Reducing Stations (PRS)

PROJECT GOALS:

- * Replace aging infrastructure (>50 years old)
- * Improve water system operation
- * Improve worker safety
- Improve ability to shutdown pipelines without impacting a large # of parcels

PROJECT BACKGROUND

ISOLATION VALVES

* BROKEN, LEAKING. BFV's, GV's, PV's

AIR RELEASE VALVES

- * MANUAL OR DON'T EXIST AT HIGH POINTS
- * AIR POCKETS IN LINES
 - * Reduces capacity

<u>PRS</u>

* NO POWER, NO TELEMETRY, UNSAFE, LEAKING JOINTS, 6' CLEAR HEIGHT, IN ROADS

DISTRICT IDENTIFIED AS HIGH PRIORITY

ORIGINAL GOALS

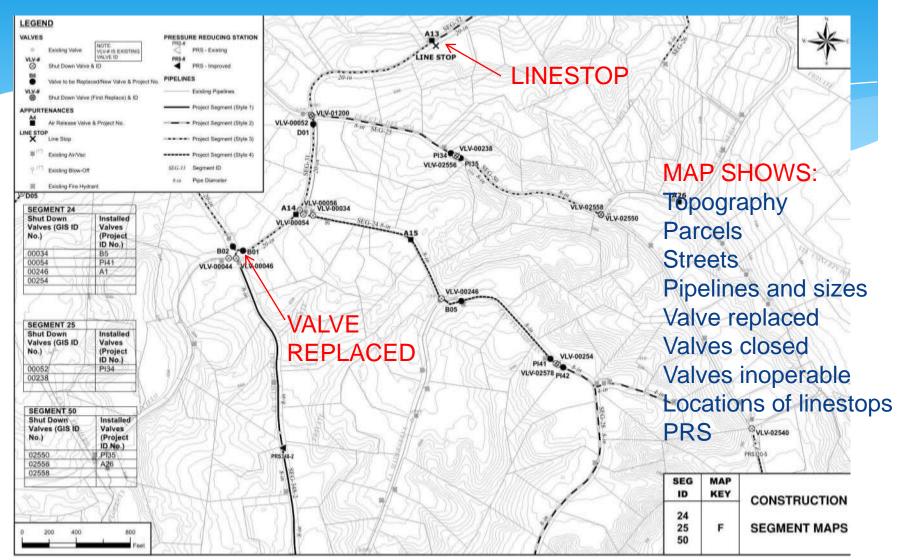
- * REPLACE ALL VALVES WITH GV's
- * UTILIZE EXISTING TEES
- * MINIMIZE REPLACEMENT COSTS

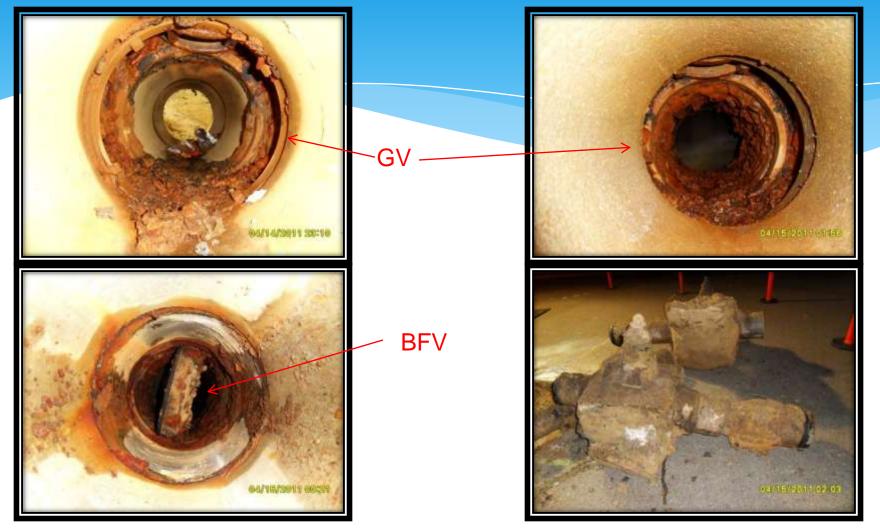
DESIGN CHALLENGE

LARGE GV's MOUNTED HORIZONTAL

- * Sizes up to 36" Diameter. >6' TALL
- * District didn't want horizontal mounting
- * Did not want rubber seated BFV's

SOLUTION


- USE METAL SEATED BFV's
 - * Heavier duty
 - San Diego County Water Authority (SDCWA) had been using for years


DESIGN CHALLENGE

- **Determine Shutdown Areas (District criteria)**
- Pipelines out of service <24 hrs
- Contractor to install valve between 8:00am and
 2:00pm
- * Only allowed on Tuesdays/Thursdays
- Faulty valves resulted in large areas to shutdown
 Solution
- * Prepare shutdown area exhibits
- Determine time to drain pipe. < 2 hours okay. > 2 hours required smaller area or linestop

SHUTDOWN MAP

VALVES IN POOR CONDITION

CONSTRUCTION CHALLENGES

CAST IRON FITTINGS IN POOR CONDITION

- * ENDED UP REPLACING FITTINGS AND ADDING VALVES
- BFV's INSTALLED WITH INCORRECT ACTUATOR
- * DIG UP AND REPLACE
- LINESTOPS BROKE 2 ACP PIPELINES
- * EMERGENCY REPAIRS
- * REQUIRED REDESIGN OF LINESTOP EQUIPMENT

VALVE CONSTRUCTION

NEW VALVES

AC PIPE IN GOOD

EX TEE ASSEMBLIES -REMOVED

VALVE CONSTRUCTION

LINESTOP

- * Primary point of control of system
- Protect downstream piping from excess pressure
- * Lead, Secondary or Emergency
- **ORIGINAL GOALS**
 - Replace and upgrade stations
 - Improve safety, operation and maintenance
 - Improve control at each PRS

EXISTING PRS

- * WITHIN ROADWAY
- * UNSAFE, DIRTY, DIFFICULT ACCESS
- * NO POWER, TELEMETRY
- * <6' CLEAR HEIGHT INSIDE. AVG WORKER HEIGHT 6'-1"
- * MISERABLE FOR O&M STAFF

EXISTING PRS

- * Speeds approaching 60 mph
- * Blind curves
- * Busy intersections

DESIGN INFORMATION

- Lead stations: Primary/bypass valve combination to handle flows, from MinDD to FF with another zone PRS out of service.
 - * Bypass valves sized for minimum possible flows:
 - 50% of estimated MinDD, assuming all PRS in zone operating. Margin of error ensures valve small enough
 - * Large enough to handle some ADD
 - * Primary valves sized for maximum flows:
 - MaxDD + FF + % of downstream zone MaxDD flows with another PRS out of service.
 - If lower zone PRS fed directly from station, need Max. flow rate through that PRS
 - * If lower zone larger, flow could be higher than for higher zone PRS
 - * Primary valve small enough to open prior to Bypass valve reaching max. flow peak, providing good overlap of flow capacities.
 - * Avoid being in a "wide open" position during max. flow

DESIGN INFORMATION (CONTINUED)

- Secondary stations open during PH demands, set to lower HGL
- * Emergency stations open during severe HGL drop such as FF
 - Design worst case with fire at a hydrant near PRS and closest other PRS out of service
- * For all stations, must decide whether to design for theoretical flows or modeled flows
 - * Upstream pipeline conditions could mean actual flows considerably less than theoretical. Must decide if going to upsize pipelines or not.
- * Avoiding cavitation a top priority
- * Try and combine pressure zones and eliminate PRS's.

DESIGN INFORMATION (CONTINUED)

- Consider flow demands from lower zones when determining design flow rates
- * Maintain pressures
 - * 50 psi residual during ADD
 - * 40 psi residual during PH
 - * 20 psi residual during FF

EMERGENCY PRS

- * Designing PRS much more than sizing valves.
 - * Analyze the entire water system if possible.
- * Hydraulic modeling of various scenarios with other PRS out of service crucial.

DESIGN INFORMATION (CONTINUED)

- * Primary valve HGL setting 3-5 psi lower than bypass valve.
 - Allows bypass to handle low flows without primary valve trying to open causing valve chatter
- * Emergency station HGL setting lower than zone HGL
 - * Stations only open during severe HGL drop
- * Determine if need check feature on pressure reducing valve
 - * If upstream HGL severely depressed during FF, may need to back feed. No check feature.
 - If upstream HGL only depressed for flows >FF, such as pipe rupture, then don't want to back feed. Use check feature.
- * If using a pressure relief valve (PRV), setting to be 10 psi higher than primary valve downstream HGL.
 - * Locate PRV on low pressure side of station

DESIGN INFORMATION (CONTINUED)

- Considered the following
 - Above ground stations
 - * Required easements
 - Architectural review committee would create problems and delays

Below ground stations

ORIGINAL ABOVE GROUND PRS LAYOUT

- Concrete: District concerned about water intrusion
- Wanted a monolithic structure

RESULTS

- The ultimate solution was to provide a packaged, below ground PRS with steel enclosure.
- * Contains:
 - Primary valve, Bypass valve (Where needed)
 - Remote pressure control and flow monitoring tied to SCADA at WTP
 - * Lighting, ventilation, dehumidifier
 - More space inside station
 - Located outside of roads

PRS INSTALLATION

OFFLOADING STATION. PLACING IN PIT

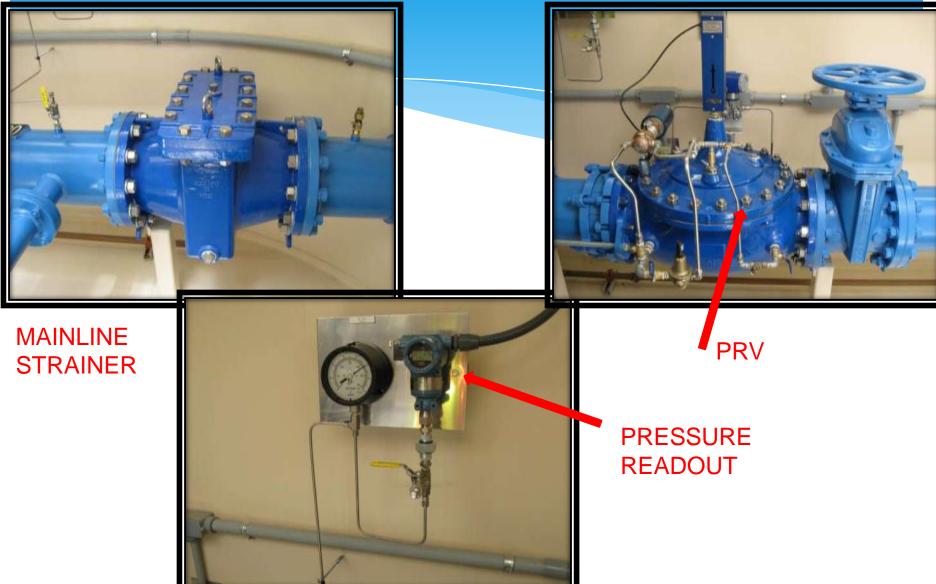
PRS INSTALLATION

OFFLOADING STATION. PLACING IN PIT

FINISHED PRS

RTU

ABOVE GROUND PRESSURE READOUT



PRIMARY PRV

PZ LABEL

MOTORIZED OPERATOR

PRESSURE RELIEF VALVE

DPT

INTRUSION ALARM

FCA & THRUST RODS

VALVES

SUMMARY OF VALVES PROBLEMS/SOLUTIONS

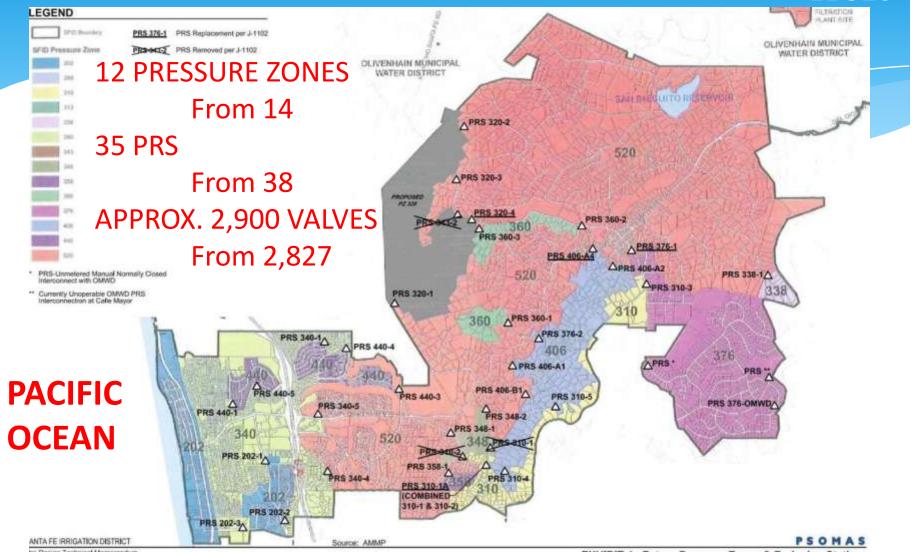
PROBLEM	SOLUTION
Cast iron fittings in poor condition	Ultimately removed all cast iron fittings and replaced with ductile iron fittings
Tee connections with one valve	Replace entire assembly with tee connection and 3 valves
Existing valves one size smaller than main line creating head loss in system	New valves same size as main line
Manual air release valves	Replaced with automatic combination air/vacuum valves (CAV). Improved hydraulics and helps prevent vacuum collapse
High points with no air release valve contained air pockets	Added CAV's at high points eliminating air pockets and reducing system head losses
Minimize shutdown size	Limit pipe draining to 2 hours max. If > 2 hours, use linestop.

SUMMARY OF PRS PROBLEMS/SOLUTIONS

PROBLEM (EXISTING STATIONS)	SOLUTION (PROPOSED STATIONS)
In paved road. Dangerous.	Located outside paved area
Leaking joints in concrete. Standing water	Steel structure. No joints. Sump pump
6' clear height. Required bending down	7' clear height
Very limited space inside	Improved clearances to service PRS
No lighting, ventilation, dehumidifier	All provided
No power, telemetry	Power provided. Telemetry connection to WTP
No remote pressure reduction control	Staff can remotely reduce pressures during low flow hours to minimize water usage
No flow monitoring	Staff can remotely monitor flows and compare with meter readings to identify leaks.

SUMMARY OF PRS PROBLEMS/SOLUTIONS

PROBLEM (EXISTING STATIONS)	SOLUTION (PROPOSED STATIONS)
Vertical ladders	Angled stairs provide easier access
Minimal security	Intrusion alarm, lockable hatch door
No redundant valves	Mainline strainer reduces risk of debris making a valve stick open
Access through 2' manhole lid	3'x6' hatch
38 PRS in 14 pressure zones	35 PRS in 12 pressure zones


CONCLUSIONS

GOALS MET

- * Isolation valve replacements and additions improve system operation, allow better control and reduce headlosses.
- * Approximately 200 new valves installed.
- * CAV installations reduce air accumulation in pipes, reduce head losses and protect against vacuum collapse.
- PRS installations improve safety, maintenance, operation and provide modern equipment remotely controlled via SCADA. Reduce water usage and help identify leaking pipes.
- * Merged 3 pressure zones to 1 and eliminated 3 PRS.

DISTRICT MAP (2012)

WTP EL 520

he-Design Technical Memorandum

LESSONS LEARNED

- Reconsider RTU above ground.
 - Majority of public complaints due to this
- Never assume cast iron fittings in good shape.
 - * All were in poor shape
- * Don't under estimate the importance of system wide hydraulic modeling when designing a PRS.
 - * Look to combine zones and eliminate stations
- * KISS rule (Keep It Simple Stupid)
 - * Originally looked at electronic solenoid controlled valves with extensive pilotry. More expensive, more complex.
 - * Ended up with simple motor controlled valves with less pilotry.
- * ACP is a decent pipe material
 - * 50-60 year old pipe in surprisingly good shape

QUESTIONS