Analysis and Evaluation of Aquifer Pumping Test Data
What Can We Learn and What is Relevant?

Russell J. Kyle, MS, PG, CHG
Associate Hydrogeologist
Wood Rodgers, Inc.

American Water Works Association
California-Nevada Section
Annual Fall Conference 2015
Las Vegas, Nevada – October 27, 2015
Overview

1. Basics of Pumping Wells
2. Types of Pumping Tests
3. Test Procedures
4. Data Analysis
5. Summary
Basics of a Pumping Well

- Ground Surface
- Static Water Level
- Aquifer Loss
- Well Loss
- Pumping Water Level
- Cone of Depression
- Discharge
Cone of Depression

Pumping Depression (1 Well)
Specific Capacity

Specific Capacity (gpm/ft) = Discharge Rate / Drawdown
Specific Capacity

- Specific capacity (Q/s) defines the relationship between drawdown in the well and its discharge rate.
 - gallons per minute per foot (gpm/foot) of drawdown
- Often used as a metric of well performance
- Varies with both time and flow rate.
- Lower specific capacities will result in deeper pumping water levels, resulting in higher energy costs to pump.

Example Calculation

\[
Q = 1,793 \text{ gpm} \\
\text{Static water level} = 114.07 \text{ feet} \\
\text{Pumping water level} = 160.3 \text{ feet} \\
\frac{Q}{s} = \frac{1,793 \text{ gpm}}{(160.3 \text{ ft} - 114.07 \text{ ft})} = 39 \text{ gpm/ft}
\]
Well Efficiency

Well Efficiency (%) = Aquifer Loss / Total Drawdown

Diagram showing Ground Surface, Static Water Level, Discharge Rate (gpm), Aquifer Loss, Well Loss, Drawdown (ft), and Aquifer.
Well Interference

- Ground Surface
- Static Water Level
- Aquifer
- Discharge
- Cone of Depression
- Interference
Overview

1. Basics of Pumping Wells
2. Types of Pumping Tests
3. Test Procedures
4. Data Analysis
5. Summary
Typical Pumping Tests

- Step Drawdown
- Constant Rate Drawdown
- Recovery
- Distance Drawdown
Step Drawdown Test

- Testing the well at multiple flow rates for a constant time period (one to three hours)
- Normalize to set time (e.g., 24 hrs)
- Use to Calculate well efficiency
 - Well efficiency relates to the ratio between the theoretical drawdown of the aquifer to the actual drawdown inside the well structure
- Can be used as a baseline from which to assess clogging of the well intake structure
Step Drawdown Test

Test Date: October 19, 2015
Static Water Level = 147.3 ft bgs
\(\Delta s = \text{Projected Incremental Drawdown} \)

- \(Q_1 = 1,000 \text{ gpm} \)
- \(\Delta s_1 = 24.3 \text{ ft} \)

- \(Q_2 = 1,471 \text{ gpm} \)
- \(\Delta s_2 = 11.0 \text{ ft} \)

- \(Q_3 = 1,936 \text{ gpm} \)
- \(\Delta s_3 = 11.2 \text{ ft} \)
Step Drawdown Test

City Of Roseville Well W-77
(9/25/2006)

Transducer Data

1242 GPM Test
Q/s = 40 GPM/FT

1800 GPM Test
Q/s = 41 GPM/FT

2392 GPM Test
Q/s = 40 GPM/FT

SWL = 113.8 FT

Elapsed Time (Minutes)
Constant Rate Drawdown Test

- Testing the well at a constant rate for an extended period of time
- Typically 12 to 24 hours in duration
- Used to calculate aquifer parameters such as transmissivity
- Often performed following installation of a new well to determine pumping dynamics for design of the permanent pump
 - Short- and Long-term drawdown estimates
 - Pump setting
Constant Rate Drawdown Test

Important to Keep Discharge Rate Constant to Determine Accurate Transmissivity

Transmissivity \((T) = \frac{264Q}{\Delta s}\)

Test Date: October 20, 2015
Static Water Level = 148.2 ft bgs
Average Pumping Rate \((Q) = 1,855\) gpm
\(\Delta s = \text{Drawdown over 1 log cycle}\)
Recovery Test

Transmissivity (T) = $264Q/\Delta s$

Good Quality Data Unaffected by Variations in Pump Operation, etc.
Distance Drawdown Test

Radius of Influence \((r_0) \)

Plot Data for Specific Time \((t)\)
- in this case 1,040 min

Transmissivity \((T) = \frac{528Q}{\Delta s} \)

Storativity \((S) = \frac{Tt}{r_0^2} \)

\(Q = 14.8 \text{ gpm} \)
\(r_0 = 398 \text{ ft} \)
\(t = 1,040 \text{ min} = 0.72 \text{ day} \)
Overview

1. Basics of Pumping Wells
2. Types of Pumping Tests
3. Test Procedures
4. Data Analysis
5. Summary
Test Procedures

- Considerations:
 - Operation of nearby wells which may affect water levels
 - Discharge during time of drought
 - Aquifer boundaries (faults, recharge sources, etc.)
- Well must be fully developed prior to performing pumping tests
- Water levels must be recovered from any prior pumping (i.e., well development)
- Typical Test Equipment
 - Test Pump and motor
 - Water level sounder
 - Totalizing flowmeter
 - Rossum Sand Tester
Well Development

Progression of Well Development Process

- Undeveloped (negative slope)
- Developed (positive slope)

Specific Drawdown (ft/gpm) vs. Discharge Rate (gpm)

Days:
- Day 1
- Day 2
- Day 3
- Day 4
- Day 5
- Day 6
Test Procedures

- Measured During Testing
 - Static groundwater level
 - Pumping water levels
 - Instantaneous pumping rate
 - Totalizer reading
 - Spinner Survey

<table>
<thead>
<tr>
<th>Elapsed Time (minutes)</th>
<th>Measurement Interval (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>2</td>
</tr>
<tr>
<td>10 – 30</td>
<td>5</td>
</tr>
<tr>
<td>30 – 60</td>
<td>10</td>
</tr>
<tr>
<td>60 – 120</td>
<td>15</td>
</tr>
<tr>
<td>> 120</td>
<td>30</td>
</tr>
</tbody>
</table>
Overview

1. Basics of Pumping Wells
2. Types of Pumping Tests
3. Test Procedures
4. Data Analysis
5. Summary
Step Drawdown Test

<table>
<thead>
<tr>
<th>Step</th>
<th>Q [gpm]</th>
<th>Δs [ft]</th>
<th>s [ft]</th>
<th>(s/Q) [ft/gpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,367</td>
<td>53.41</td>
<td>54.4</td>
<td>0.040</td>
</tr>
<tr>
<td>2</td>
<td>1,785</td>
<td>53.40</td>
<td>107.8</td>
<td>0.060</td>
</tr>
<tr>
<td>3</td>
<td>2,207</td>
<td>36.75</td>
<td>144.6</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Incremental Drawdown (Δs) (t = 1,440 min)

Q₁ = 1,367 gpm
Q₂ = 1,785 gpm
Q₃ = 2,207 gpm
Specific Drawdown

Formation Loss Coefficient (y-intercept)
\[B = 0.0164 \text{ ft/gpm} \]

Well Loss Coefficient (slope of line)
\[C = 0.000005083 \text{ ft/gpm}^2 \]
Well Efficiency Analysis Chart

Well Efficiency (%) = Formation Loss / Drawdown in Well

where:
- s_w = drawdown in well (ft)
- Q = pumping rate (gpm)
- B = formation loss coefficient (ft/gpm)
- C = well loss coefficient (ft/gpm2)
- BQ = formation loss (ft)
- CQ^2 = well loss (ft)
- E = well efficiency (%)
Aquifer Transmissivity

- The rate of flow in gallons per minute through a vertical section of aquifer 1-ft wide, extending the full thickness of the aquifer, under a hydraulic gradient of 1.
- Or more simply, the transmission capability of an entire thickness of aquifer
- Can be determined from:
 - Constant rate pumping test
 - Distance drawdown test
 - Recovery test
- Estimated from specific capacity
Jacob’s Equation:
\[T = \frac{264 \times Q}{\Delta s} \]

where:
- \(Q \) = pumping rate, gpm
- \(\Delta s \) = drawdown over 1 log cycle

\[T = \frac{(264)(1,855 \text{ gpm})}{3.1 \text{ ft}} \]

\(T \approx 160,000 \text{ gpm/ft} \)
Aquifer Storativity

- The amount of water released or added to storage through a vertical column of aquifer having a unit cross-sectional area, due to a unit decline or increase in average hydraulic head.
- In unconfined aquifers this represents the drainable volume of water and is equivalent to specific yield.
- Can help to determine if your aquifer is confined or unconfined.
- Can be determined from:
 - Distance drawdown test
 - Observation well time-drawdown data
Aquifer Storativity

Transmissivity (T) = $\frac{528Q}{\Delta s}$

Storativity (S) = $\frac{Tt}{r_0^2}$

Radius of Influence (r_0)

Plot Data for Specific Time (t) - in this case 1,040 min

$Q = 14.8$ gpm
$r_0 = 398$ ft
$t = 1,040$ min = 0.72 day
Overview

1. Basics of Pumping Wells
2. Types of Pumping Tests
3. Test Procedures
4. Data Analysis
5. Summary
What Can I Learn?

- Short- and long-term pumping dynamics
- Aquifer parameters
 - Transmissivity
 - Storativity
- Well interference
- Well efficiency
- Flow profile
Pump Design

- Determine the most efficient and appropriate design pumping rate for any well
- Estimate short- and long-term drawdown from which to design the permanent well pump
 - Total Dynamic Head (TDH)
 - Pump intake setting
- Estimate well interference
- Estimate sand production and need for pump-to-waste
- Establish baseline well efficiency to be used as metric for future well rehabilitation efforts
Why Do I Care About Transmissivity and Storativity?

- Siting of wells in productive aquifers
- Can be used to estimate magnitude of water level interference at given time and distance from a pumping well
 - Anticipate interference when siting new wells
 - Assess minimum well spacing in a well field
- Calculate anticipated flow rates before installing a well
- Useful in development of groundwater models
Well Efficiency Monitoring

Well Efficiency has declined from 78% to 25% in 6 years (at 3,000 gpm)

Aquifer Loss is Unchanged

Well Loss has increased due to clogging of well intake structure

February 2009

June 2015
Flow Profile

- Spinner (flowmeter) survey
 - Measures depth-specific flow contribution
 - Useful for addressing future flow and WQ issues
Summary

- Aquifer pumping tests provide invaluable data that can be used for a wide variety of needs.
- You may not know when you will need this information.
- It is recommended that controlled pumping tests be conducted following any new well installation, or following a well rehabilitation event.
- Step tests should be conducted periodically to assess well efficiency trends and to assist with determination of when to rehabilitate.
Questions?

Russell J. Kyle, MS, PG, CHG
Associate Hydrogeologist
Wood Rodgers, Inc.
rkyle@woodrodgers.com
(626) 379-7569