Reverse Osmosis/Nanofiltration Membranes 101

Alex Wesner P.E.

Separation Processes, Inc.

Morning Agenda

- I. Introduction to RO / NF
- II. Membranes and Modules
- III. RO Theory
- **IV.** Operation
- V. Monitoring & Optimization

INTRODUCTION TO RO / NF

Note: 1 Micron (1x10 Meters)≈4x10 Inches (0.00004 Inches)

1 Angstrom Unit = 10^{10} Meters = 10^{4} Micrometers (Microns)

RO and Nanofiltration (NF) Defined

- RO and NF are separation processes that produce purified water (permeate) and reject (concentrate) from a feed stream
- Water under pressure flows through a semipermeable membrane, while salt is retained and concentrated on the feed side
- The difference between RO and NF is in the membrane rejection
 - RO removes nearly all dissolved ions
 - NF removes color and primarily divalent/multivalent ions (calcium, magnesium, arsenic and sulfate)

RO and Nanofiltration (NF) Applications

- RO TDS Reduction
 - Potable water
 - Waste reclamation, volume reduction
 - Ultrapure water Boiler Feed, Electronics Mfg, WFI
- NF Selective Removal of Low MW Components
 - Color and organic removal
 - Softening (hardness removal)

Reverse Osmosis Terminology

Permeate = Water passing through membrane Concentrate = Water <u>not</u> passing through membrane Feed = Total feed to RO (Permeate + Concentrate) Recovery = Water Recovery (%) Rejection = Salt Rejection (%)

Reverse Osmosis and Nanofiltration

- The amount of water that can be recovered is limited by chemistry & hydraulics
- Two strategies to increase recovery
 - Addition of acid increases solubility of some scale forming compounds (CaCO₃ and CaPO₄)
 - Scale Inhibitors to delay or stop formation of scale on the membrane
- RO/NF membranes have important limitations
 - The feed must be essentially free of particles
 - The membrane must not be exposed to strong oxidants (free chlorine, permanganate)
- Staging of membrane elements maintains crossflow velocities within acceptable ranges

Reverse Osmosis Trains

5 MGD Train

RO / NF MEMBRANES & MODULES

RO/NF Process – Overview

- Pressure driven process using membranes
- Purpose: removal of dissolved solids
- RO is one of the few methods that removes dissolved salts
 - Ion exchange, which uses expensive regeneration chemicals
 - Thermal processes which use more energy than modern RO technologies
- NF removes color at lower pressure/energy than RO where high TDS is not a concern

RO / NF Membranes

- Membranes are non-porous
- Water and salt passage through the RO membranes are by two different mechanisms (pressure and diffusion)
- Almost universal is the use of flat sheet membrane assembled in spiral wound elements

Thin Film Composite Membrane Cross Section

Polyamide 0.04 - 0.1 microns

Polysulfone 75 - 100 microns

Polyester Fabric 2000 microns

Thin Film Composite Membrane Characteristics

Characteristic	Reverse Osmosis	Nanofiltration	
Operating Pressure	100 - 300 psi	50 - 150 psi	
NaCl Rejection	up to 99.8%	20% to 70% 99.7% MgSO4 & color removal	
pH Tolerance Range	2 - 10	3 - 9	
Temperature	113°F Max	113°F Max	
Oxidant Sensitivity	All Sensitive to Oxidants	PES (not TFC) Tolerant to Free	
	Some tolerance to Chloramine	Chlorine	

Spiral Wound Membrane Elements

Χ

Making a Spiral Wound Element

Making a Spiral Wound Element

Typical RO Membrane Elements

Pressure Vessel Assembly

Spiral Wound Element Components

- Brine Seal (EPR)
- ATDs Anti Telescoping Device (ABS)
- Permeate Core Tube (Noryl or PVC)
- Outer Wrap
 (Fiberglass Reinforced Plastic)

REVERSE OSMOSIS THEORY

Spontaneous flow of water from dilute solution to concentrated solution, when the two solutions are separated by semi-permeable membrane

<u>osmosis</u>

water flow from dilute side to concentrated side

<u>equilibrium</u>

no net water flow **P** = osmotic pressure

reverse osmosis

water flow from concentrated side to dilute side

Osmotic Pressure

- Property of a <u>solution</u> dependent upon:
 - Type of contaminants (salts) in solution
 - Concentration of salts in solution
 - Temperature of solution
- Osmotic pressure can be calculated from water chemistry and temperature
- Based on number of molecules, not size of molecule

Typical Osmotic Pressures

Species	Concentration (mg/L)	Osmotic Pressure (psi)	
NaCl	1,000	11.4	
LiCI	1,000	16	
MgSO ₄	1,000	3.6	
Sucrose	1,000	1.5	
Seawater	35,000	374	

Flow of water through a unit area of membrane

The most common units of flux are "gfd" (Gallons per Day / Square Foot)

15 gfd = 2 ft/day or $1^{"}$ /hour velocity through membrane

Flux (gfd)	=	Permeate	Flow	(gpd)
			Membrane	Area

$$\mathbf{Q}_{\mathrm{W}} = \mathbf{A} \cdot \mathbf{a} \cdot \mathbf{P}_{\mathrm{net}}$$

where:

- Q_W = Permeate Water Flow
- A = Water Permeation Coefficient
- a = Membrane Area
- P_{net} = Net Driving Pressure

$$P_{\text{NET}} = P_{\text{FEED}} - \Delta P - \Delta \Pi - P_{\text{PERM}}$$

Where:

- P_{NET} = Net Driving Pressure
- P_{FEED} = Feed Pressure
- ΔP = Feed Concentrate Pressure (delta P)
- $\Delta \Pi$ = Average Osmotic Pressure
- P_{PERM} = Permeate Pressure

Specific Flux is the Water Permeation Coefficient

$SF = A = Q_W / (a) (P_{NET})$

where:

- SF = Specific Flux
- Q_w = Permeate Water Flow
- A = Water Permeation Coefficient
- a = Membrane Area
- P_{NET} = Net Driving Pressure

At a given temperature (temp dependent)

$F_{\rm S} = B a \left(\Delta C \right)$

- where: F_s = Salt Flow
 - **B** = Salt Permeation Coefficient
 - a = Membrane area
 - ∆C = Average Concentration Difference Across the Membrane

Temperature dependent

Ratio of permeate flow to feed flow expressed as a percentage

Percentage of Total Dissolved Solids (TDS) that does not pass through membrane. Based on feed water TDS

% Rejection =
$$\left(1 - \frac{\text{Permeate TDS}}{\text{Feed TDS}}\right) \times 100$$

Removal Rates of Constituents by RO

	Feed	Permeate	% Rejection*
	mg/L	mg/L	
Ca ²⁺	93	0.01	100.0%
Mg ²⁺	24.9	0.01	100.0%
Na ⁺	214	6.38	97.0%
NH ₄ ⁺ (as N)	30.2	1.24	95.9%
Cl -	236	3.64	98.5%
HCO ₃ -	287.7	16.45	94.3%
SO ₄ ²⁻	298.5	0.48	99.8%
ТОС	11.1	0.18	98.4%
SiO ₂	23.7	0.10	99.6%
Total Nitrogen (as N)	33.5	1.53	95.4%
TDS	991	19.86	98.0%

* System Rejection: 11gfd @ 85% Recovery

% Rejection =
$$\left(1 - \frac{\text{Permeate TDS}}{\text{Feed TDS}}\right) \times 100$$

Concentration Factor

 $CF = \frac{C_C}{C_F}$

- where: CF
- **Concentration Factor**
 - C_{C} = Concentration of Concentrate C_{F} = Concentration of Feedwater

CF depends on Recovery and Salt Rejection

at constant $\overline{\Delta C}$ across the membrane

P _{net}	Permeate Water	Permeate Salt	Permeate Concentration
(psi)	(L/min)	(mg/min)	(mg/L)
50	1	1,000	1,000
100	2	?	?

at constant $\overline{\Delta C}$ across the membrane

P _{net}	Permeate Water	Permeate Salt	Permeate Concentration
(psi)	(L/min)	(mg/min)	(mg/L)
50	1	1,000	1,000
100	2	1,000	500
200	4	1,000	250
400	8	1,000	125

Temperature Correction Factor Hydranautics ESPA-2 Reverse Osmosis Membrane

Temperature Effect on RO Permeability

OPERATION

Important points about **Reverse Osmosis**

- Membrane Performance is local to each element
- Osmotic pressure must be overcome to obtain flow
- Flow of water through membrane is a function of local net driving pressure
- Flow of salt through membrane is a function of local salt concentration
- Osmotic pressure of feed increases as salts are rejected, lowering the net driving pressure
- Increasing water temperature will increase water flow and salt passage

Understanding the two types of Pressure Measurements

- Net Driving Pressure available to make permeate
- Delta P (dP) Pressure drop from feed end to concentrate end of vessel
 - System dP: Feed Concentrate
 - Stage 1 dP: Feed Stage 1 Out (Interstage)
 - Stage 2 dP: Interstage Stage 2 Out (Concentrate)

RO Process – Criteria for Successful Operation

- **Operate system at design permeate and** concentrate setpoints
- Minimize (and monitor) the operating pressure required
- Normalize operating data for overall system and for each stage if possible
 - Specific Flux, Normalized ΔP and **Normalized Permeate Conductivity**
- Maintain permeate water quality
- **Clean based on system limitations and** economics (energy vs cleaning cost)

Pretreatment

- Chemical Addition
 - Acid
 - Scale Inhibitor
- Cartridge Filters
- Feedwater Instrumentation

Threshold Inhibitor (Antiscalant) Addition

Function:

- Delay and/or inhibit the precipitation of sparingly soluble salts in the RO concentrate stream
 - Calcium Carbonate (CaCO₃)
 - Calcium Phosphate (CaPO₄)
 - Calcium Sulfate (CaSO₄)
 - Barium Sulfate (BaSO₄)
 - Silica (SiO₂)

Cartridge Filters

Function:

- Remove suspended solids/debris
- Protect pumps and RO membranes
- Provides additional mixing for chemicals

RO Process – Minimize System Pressure During Operation

Pressure increases due to one of 3 reasons

- Fouling Accumulation of biological or organic matter on surface of membrane
- Scaling Precipitation of inorganic compound at tail end of array
- Deposition Accumulation of debris on face of first element

Fouling of RO Membranes

- Fouling is a generic term that can consist of one or more of the following:
 - Suspended solids, colloids, microorganisms, and organic chemicals
- Fouling can be difficult to predict
- Fouling can occur at the front end (lead elements), tail end or overall

Scaling of RO Membranes

• Scaling refers to formation of a chemical "scale" similar to what occurs in a water heater or boiler

Typical scales are:

- calcium carbonate, calcium phosphate
- calcium sulfate, barium sulfate or strontium sulfate
- silica
- Scaling potential can be calculated based on water chemistry
- Scaling initially occurs at tail end of RO system
 - last few elements

MONITORING AND OPTIMIZATION

Regularly Monitored RO Parameters

- Date and Time
- Feed pH
- Feed conductivity
- Feed temperature
- Feed pressure
- Stage differential pressures
- Concentrate pressure
- Concentrate flow
- Permeate flow
- Permeate conductivity
- Permeate pressure

RO Monitoring Tools

- **Conductivity profiles**
- **Vessel flow tests**
- **CIP** effectiveness
 - Lower feed pressure
 - Lower delta P
 - "Temporary" effect on TDS
- Normalized performance data

- Calculation of values that describe membrane performance at design conditions even when system is not operated at design conditions (flow, temperature, recovery, etc.)
- Removes influence of variable operating conditions

Why Normalize Data?

- Allows user to make direct comparison of membrane performance despite changes in operating conditions
- Used to determine if the system performance is stable or developing problems

Types of Normalized Data

- **Specific Flux Membrane productivity on a standard basis**
- Normalized ΔP Pressure drop at standard operating conditions
- **Normalized Permeate Conductivity Permeate** conductivity at standard operating conditions

Questions

Alex Wesner P.E.

Separation Processes, Inc.

awesner@spi-engineering.com

619-316-1655

