Flow Rate Calculation

Calculating Flow Rate

How many gallons drained from this tank?

What is the detention time in this basin?

Hoov morch wouter weent inoto storage?

How long will the water last?

Flow Rate Equation

Flow Rate $=$ Volume \div Time

Flow Rate Formula

Flow Rate $=$ Volume \div Time

Volume $=$ Flow Rate \mathbf{x} Time

Time $=$ Volume \div Flow Rate

This is the ONLY formula that uses "Time"!

Measurements

Number

Flow Rate Units

- Volume:
- Time:

When divided,

- Flow Rate:

Cubic Feet ($\mathrm{ft} \mathbf{x ~ f t ~ x ~ f t) ~}$
Seconds

Cubic Feet per second (cfs)

Flow Rate Units

■ Volume:

- Time:

When divided,

- Flow Rate:

Gallons
Minute

Gallons per minute (gpm)

Flow Rate Units

- Volume:
- Time:

When divided,
■ Flow Rate:

Million gallons
Day

Million gallons per day (MGD)

Solving Math Problems

Read the Problem - Twice!

Simplify the Question

Identify the Formula

Find the "Variables"

Flow Rate Problem

In 60 minutes, a water tank's volume increases by 4,200 gallons. What is the flow rate of water filling the tank?

Question:
What is the Flow Rate?

Formula: Flow rate $=$ Volume \div Time

Flow Rate Problem

In 60 minutes, a water tank's volume increases by 4,200 gallons. What is the flow rate of water filling the tank?
Flow Rate $=\frac{\text { Volume }}{\text { Time }}$
Flow Rate $=\frac{4,200 \text { gal }}{60 \mathrm{~min}}$

$$
=70 \text { gallons per minute }
$$

Flow Rate Example - I

In four hours, a water tank's volume increases by 24,000 gallons. What is the flow rate of water filling the tank?

Question: What is the Flow Rate?

Formula: Flow rate $=$ Volume \div Time

Flow Rate Example - I

In four hours, a water tank's volume increases by 24,000 gallons. What is the flow rate of water filling the tank?

Volume

Flow Rate $=\underset{\text { Cime }}{24,000 \text { gal } 1 \text { hour }} \rightarrow$ hours 60 min
Tinversion Factor Conversion Factor
$=100$ gallons per minute

Flow Rate Example - II

How many gallons of water can be pumped into a water tank in six hours, if the pumping rate is 2000 gallons per minute?

Question: What is the Volume?

Formula: Volume $=$ Flow Rate x Time

Flow Rate Example - II

How many gallons of water can be pumped into a water tank in six hours, if the pumping rate is 2000 gallons per minute?

Volume $\left.=\frac{2,000 \text { gal } 6 \text { hours }\left\{\begin{array}{l}60 \text { min } \\ 1 \mathrm{~min} \\ 1\end{array}\right\}}{1 \text { hour }}\right\}$

$$
=720,000 \text { gallons }
$$

Flow Rate Example - III

How long will it take to completely drain a full, 200,000 gallon water tank, if the drain rate is 5000 gallons per minute?

Question: What is the Time?

Formula: Time $=$ Volume \div Flow Rate

Flow Rate Example - III

How long will it take to completely drain a full, 200,000 gallon water tank, if the drain rate is 5000 gallons per minute?

Time $=\frac{200,000 \mathrm{gal}}{5} \frac{1 \mathrm{~min}}{5000 \mathrm{gal}}$
Invert and Multiply
$=40$ minutes

Flow Rate Example - IV

A storage tank that is 100 feet wide by 150 feet long with a water depth of 25 feet drains completely in 46.75 minutes. What was the flow rate (gpm) during this draining operation?

Flow Rate $=$ Volume \div Time

Flow Rate Example - IV

Find the number of gallons in a storage tank that is 100 feet wide by 150 feet long with a water depth of 25 feet.
Volume $=(100 \mathrm{ft} \times 150 \mathrm{ft}) \times 25 \mathrm{ft}$
$=375,000 \mathrm{ft}^{3}$
$=\frac{375,000 \mathrm{ft}^{3} \frac{7.48 \mathrm{gal}}{1} \frac{\mathrm{ft}^{3}}{}}{}$
$=2,805,000$ gal

Flow Rate Example - IV

A water tank (volume $=2,805,000$ gal) drains in 46.75 minutes. What is the flow rate?

Flow Rate $=\frac{2,805,000 \text { gal }}{46.75 \mathrm{~min}}$
$=60,000$ gallons per minute

Flow Rate Example - V

How long will the supply last in a storage tank that is 100 feet wide by 150 feet long with a water depth of 25 feet, if it is drained at $60,000 \mathrm{gpm}$?

Time $=$ Volume \div Flow Rate

Flow Rate Example - V

Find the number of gallons in a storage tank that is 100 feet wide by 150 feet long with a water depth of 25 feet.
Volume $=(100 \mathrm{ft} \times 150 \mathrm{ft}) \times 25 \mathrm{ft}$
$=375,000 \mathrm{ft}^{3}$
$=\frac{375,000 \mathrm{ft}^{3}}{1} \frac{7.48 \mathrm{gal}}{1 \mathrm{ft}^{3}}$
$=2,805,000 \mathrm{gal}$

Flow Rate Example - V

How long will it take to drain a water tank (volume $=2,805,000$ gal) at 60,000 gpm?

Time $=\frac{2,805,000 \text { gal } \frac{1 \mathrm{~min}}{60,000 \text { gal }}}{}$
$=46.75$ minutes

The Flow Rate Formula

Water Math: Flow Rate

Quiz

Question 1

A 2 million gallon reservoir is expected to serve its customers for 24 hours. What is the maximum flow rate (in gpm) this reservoir is expected to deliver in this case?

Question 1

A 2 million gallon reservoir is expected to serve its customers for 24 hours. What is the maximum flow rate this reservoir is expected to deliver in this case?

Question: What is the Flow Rate?

Formula: Flow Rate $=$ Volume \div Time

Question 1

A 2 million gallon reservoir is expected to serve its customers for 24 hours. What is the maximum flow rate?

Flow Rate $=\frac{2,000,000 \text { gal }}{24 \text { hours }} \frac{1 \text { hour }}{60 \mathrm{~min}}$

$$
=\quad 1,389 \text { gallons per minute }
$$

Question 2

A $2,000 \mathrm{gpm}$ pump station is filling an empty 2 MG reservoir. How much water will be in storage after 12 hours?

Question 2

A $2,000 \mathrm{gpm}$ pump station is filling an empty 2 MG reservoir. How much water will be in storage after 12 hours?

Question: What is the Volume?

Formula: Volume $=$ Flow Rate x Time

Question 2

A $2,000 \mathrm{gpm}$ pump station is filling an empty 2 MG reservoir. How much water will be in storage after 12 hours?

Volume $=\frac{2,000 \text { gal }}{} 12$ hours 60 min $~(1$ min 11.1 hour

$$
=1,440,000 \text { gallons }
$$

Question 3

A system is serving its customers from storage from a 2 million gallon reservoir. If the reservoir held 1.8 MG when this operation began, and the average flow rate to the customers was 3.0 MGD , how many hours will the supply in the reservoir last?

Question 3

A system is serving its customers from storage from a 2 million gallon reservoir. If the reservoir held 1.8 MG when this operation began, and the a ferage flow rate to the customers was 3.0 MGD, how many hours will the supply in the feservoir last?
Question: What is the Time?

Formula: Time $=$ Volume \div Flow Rate

Question 3

Time $=$ Volume
Flow Rate
Time $=\frac{1.8 \text { Mgallons }}{3.0 \text { Mgal } / \text { day }}$
Time $=0.6$ days $(x 24$ hours $/ 1$ day)

Time $=14.4$ hours

Question 4

A reservoir is 80 feet in length and 25 feet wide. If the water level drops from 22 feet to 14 feet in 8 hours, what is the flow rate leaving this reservoir, measured in gallons per minute?

Question 4

A reservoir is 80 feet in length and 25 feet wide. If the water level drops from 22 feet to 14 feet in 8 hours, what is the flow rate leaving this reservoir, measured in gallons per minute?
Question: What is the Flow Rate?
???
Formula: Flow rate $=$ Volume \div Time

Question 4

Flow Rate $=$ Volume \div Time

Volume $=\quad \mathrm{L} \times \mathrm{W} \times \mathrm{H}$

$$
=\quad 80 \mathrm{ft} \times 25 \mathrm{ft} \times(22-14 \mathrm{ft})
$$

$=16,000 \mathrm{ft}^{3}$, or 119,680 gallons

Flow Rate $=\quad 119,680$ gal
(8 hours x $60 \mathrm{~min} / \mathrm{hr}$)
Flow Rate $=\quad 249$ gallons per minute

Question 5

What will be the depth of water in a 110 -foot diameter, 1.5 MG reservoir after 4 hours, if the reservoir starts full and drains at a rate of 5000 gpm ?

Question 5

What will be the depth of water in a 110 -foot diameter, 1.5 MG reservoir after 4 hours, if the reservoir starts full and drains at a rate of 5000 gpm?

Question: What is the Depth?

Volume

Calculation
Formula

Question 5

Question: What is the Depth?

Formula: Depth $=$ Volume \div Area

Formula: Volume $=$ Flow Rate x Time

Question 5

Volume $=\frac{5,000 \text { gal }}{} 4$ hours $\quad 60$ min

$$
=\quad 1,200,000 \text { gallons }- \text { drained }
$$

Volume left in tank after 4 hours =
$1,500,000-1,200,000=300,000 \mathrm{gal}$
$=40,107 \mathrm{ft}^{3}$

Question 5

Why do we need the volume in cubic feet? Height $=$ Volume

$$
\begin{aligned}
& =\frac{\text { Area }_{\text {base }}}{\mathrm{ft}^{3}} \\
& =\frac{\mathrm{ft}^{2}}{\mathrm{ft} \times \mathrm{ft} \times \mathrm{ft}} \\
& =\mathrm{feet}
\end{aligned}
$$

Question 5

How deep is the water in a 110-foot diameter reservoir that holds 40,107 cubic feet?
Height $=\frac{\text { Volume }}{\text { Area }_{\text {base }}}$
$=\frac{40,107 \mathrm{ft}^{3}}{0.785 \mathrm{~d}^{2}}$
$=\frac{40,107 \mathrm{ft}^{3}}{9,499 \mathrm{ft}^{2}}$
$=4.22$ feet

Question 6

A system is serving its customers from storage from a 2.5 million gallon reservoir that is 80% full. The average flow rate to the customers is 3500 gpm. A pump station is refilling this tank at a rate of 3.5 cfs. How many hours will the supply in the reservoir last?
Question: What is the Time?

Formula: Time $=$ Volume \div Flow Rate

Question 6

What is the volume of water in the tank when the operation begins?
$=\quad 2,500,000$ gallons $\times 0.80$
$=2,000,000$ gallons

Question 6

What is the net flow rate into/out of the reservoir?

$$
\begin{array}{lll}
\text { Flow } \operatorname{In}= & 3.5 \mathrm{ft}^{3} & 60 \mathrm{sec} \\
\hline 1 \mathrm{sec} & 1 \mathrm{~min} & 1 \mathrm{ft}^{3}
\end{array}
$$

Flow In $=\quad 1,571 \mathrm{gpm}$
Flow Out $=-3,500 \mathrm{gpm}$
Net Flow $=$ 1,929 gpm - out

Question 6

Time $=$ Volume
Flow Rate
Time

$$
=\frac{2,000,000 \text { gatlons }}{1,929 \text { gatlons/minute }}
$$

Time $=1,037$ minutes $(\div 60 \mathrm{~min} / 1 \mathrm{hr})$

Time $=17.3$ hours

Question 7

A system is serving its customers from a full, 1-million gallon reservoir, with a diameter of 90 feet. The average flow rate to the customers is 6.7 cfs. A pump station is refilling this tank at a rate of 2000 gpm. What will be the water level in this tank after 8 hours?

Question: What is the Depth?

Question 7

Question: What is the Depth?

Formula: Depth $=$ Volume \div Area

Formula: Volume $=$ Flow Rate x Time

Question 7

What is the net flow rate into/out of the reservoir?

Flow Out $=$| $6.7 \mathrm{ft}^{3}$ | 60 sec | 7.48 gal |
| :--- | :--- | :--- |
| 1 sec | 1 min | $1 \mathrm{ft}^{3}$ |

Flow In $=2,000$ gpm
Flow Out $=-3,007 \mathrm{gpm}$
Net Flow $=1,007$ gpm - out

Question 7

Volume $=$| 1,007 gal | 8 hours | 60 min |
| :---: | :---: | :---: |
| 1 min | 1 | 1 hour |

$$
=483,360 \text { gallons }- \text { drained }
$$

Volume left in tank after 8 hours $=$

$$
\begin{aligned}
1,000,000-483,360 & =516,640 \mathrm{gal} \\
& =69,070 \mathrm{ft}^{3}
\end{aligned}
$$

Question 7

How deep is the water in a 90 -foot diameter reservoir that holds 69,070 cubic feet?
Height $=\frac{\text { Volume }}{\text { Area }_{\text {base }}}$
$=\frac{69,070 \mathrm{ft}^{3}}{0.785 \mathrm{~d}^{2}}$
$=\frac{69,070 \mathrm{ft}^{3}}{6,359 \mathrm{ft}^{2}}$
$=10.9$ feet

