In-Situ Comparison of Water Supply Well Gravel Packs

Scott Lewis, PG Principal Geologist

CA-NV AWWA Fall Conference October 23, 2018

- Overview of SJW's McLaughlin Station Project
- Comparison of different gravel pack materials
 - \circ Design
 - o Constructability
 - o Development
 - \circ Performance
 - o Cost
- Project challenges

SJWC – McLaughlin Station

- Four+ acre site
- Room for multiple wells
- Existing homes
- Recreation field

Test Hole-Monitoring Well

- Small diameter test hole
- Sample collection
- Geophysical surveys
- Installation of multiple piezometers
- Sieve analysis
- Collection & analysis of water samples
- Long term water level monitoring

U.S. Standard Sieve Numbers

Cumulative Percent Retained

Slot Opening and Grain Size in Thousandths of an Inch

Slot Opening and Grain Size in Thousandths of an Inch

McLaughlin Production Well

- 1,800 GPM
- Deep annular seal
- 18" Diameter
 - 0.3125" Copper bearing blank
 - $\,\circ\,$ 0.3125" and 0.375" Stainless steel blank
 - $\,\circ\,$ 0.3125", 0.055" Louvered well screen
- Gravel fill and sounding pipes
- 8x16 Cemex (Monterey) gravel

McLaughlin Station Layout

- Six production wells
- Test hole/monitoring well
- Minimum spacing 150'
- All wells constructed by same contractor
- Wells constructed and tested
 between March 2016 & April 2017

Gravel Pack Materials

Premier Silica

CA-NV AWWA October 23, 2018

- Texas
- Rounded, spherical sand
- Uniform shape
- 99% Silica
- Chemical resistant
- Standard gradations and blends
- NSF certified

Premier Silica 6x9

CA-NV AWWA October 23, 2018

- Monterey, CA
- Rounded sub rounded
- Spherical to lenticular
- 91% Silica
- Chemical resistant
- Standard gradations and blends
- NSF certified
- Works well in fine sands

CEMEX 6x12

Sili (Sigmund Linder) Beads

Spherical glass beads Uniform size, shape No stratification Consistent, optimal packing Smooth Resistant to compression Soda Lime Glass Chemical resistant

Shorter development times Higher yields, specific capacity Longer rehabilitation intervals, more effective

Sili 4508R 0.0787"-0.0945"

U.S. Standard Sieve Numbers

Slot Opening and Grain Size in Thousandths of an Inch

U.S. Standard Sieve Numbers

Slot Opening and Grain Size in Thousandths of an Inch

Production Well Elogs

- Test hole 45' from Well No. 5
- Upper zones consistent
 across site
- Formation depths/thickness diverged with depth
- Wells were redesigned in field

w/0.055" Slot Size

w/0.055" Slot Size

w/0.055" Slot Size

w/0.070" Slot Size

Well	Slot Size (in)	Pack Material	Screen Open Ended (ft) (hrs)		Swab/Airlift (min/ft)	Pump Development (hrs)	
1	0.070	6x12 C	167	3.8	14.4	40.0	
2	0.070	4508R	165	2.5	13.9	38.3	
3	0.055	4507R	135	6.0	18.2	41.0	
4	0.055	8x16 C	167	3.0	18.0	50.0	
5	0.055	8x16 P	167	3.8	14.6	40.5	
6	0.070	6x9 P	166	4.5	13.4	37.0	
		Averag	ge Times	3.9	15.4	41.1	

- Average swab/airlift development for larger slot/gravel designs: 13.9 min/ft
- Average swab/airlift development for smaller slot/gravel designs: 16.9 min/ft
- Time savings of 8.3 hours

San Jose Water Company McLaughlin Wells 8-hour Constant Rate Tests

Pump Testing

Well	Slot Size (in)	Pack Material	Screen (ft)	Flow Rate (gpm)	Specific Capacity (24 hr, gpm/ft)
1	0.070	6x12 C	167	1,831	75
4	0.055	8x16 C	167	1,773	62
5	0.055	8x16 P	167	1,773	48
2	0.070	4508R	165	1,806	46
6	0.070	6x9 P	166	1,848	33
3	0.055	4507R	135	1,808	32

cu													100
	STOM	ER:						-	-				
Pur	ping W	ell: #1	Test Type:	8 HR	Step Tes	it.	Constant I	tatë 🖌	Recovery	1 118	Monite	iring	_
Loca	tion: n	in Lough	A test Oper	itor: D	ARYL	Whi	HLEY					_	
SW2-	59	45	Oate/Time	8.	15:14			Pumping	Rate (GP	ME 190	0		
1.2000	uring Pi	aint-	Test Startin	ng Date/Ti	mes	×.	25-16	81	00 A	m			
10042	ining Pr	tine stanille	VCC Tait Endla	Date/Tis	hua :								-
Meas	uring PC	MILL CARY AV	Contraction and Contraction	100107-10	04		1001000		TTAK.	1 12			
Pump	Depth:	-	Duration:	-	STAL		140433	No. of Concession, Name	LE IVI.			-	1
Degred To	a Tine	or latence La	at Totalizer	WTU:	COM.	Stod	Elapsed Time	Time or	Weter Lawer	Totalizer	NTU	GPM	Sand
(Min)	Fm Re	ndiel(855)	-	-		-	110	- Aller	8210	19063	1.12	1804	TRACE
nos.	-	-	-				120 (2 HIRS)		83,21	190670	1. Per	1802	
-	-	40.3	3 190459		1806		1/2 150 HR	10:30	\$3.28	190725	1.27	1792	
	1	167 2	5 190461		1815		180 (3 885)	11:00	83.94	190779	1.03	1804	TRACE
-	1	81.00	190413		1827		210	11:30	84.15	190832	0,94	1812	TRACE
6	1	41.2	21190465	-	0.000	2	240 (4HRS)	12:00	33.60	190887	0.98	1803	
7		81.4	190467		1814		300 (S HIRS)	12:30	82.48	190941	1.14	1869	LENCE
		\$1.53	190468		1514	1	340 (E HIRS)	1:00	31.89	190995	10.68	1813	
		51.55	190470		1812		420 (7 HRS)	1:30	31.18	191049	0.88	1819	-
10		81.68	- 1904 72		1797		480 (8HR5)	2:00	30.8	191103	0.67	1819	1
12		81.80	190477		1806		540 (9 HRS)	2:30	80.3	191158	0,82	1804	TRIEF
34		\$1.83	190480	3.62	1804	TREEF	600 (10 HRS)	3:00	30.19	191212	110	1813	
16		51,99	190483		1804		660 (11 HRS)	3:30	79.83	191260	0.90	1807	TRACE
18		81.97	190487		1801		,720 (12 HRS)	4:00	179.70		0.70	180	Trace
10		82.0	190490	Z.10	1804	TEACE	780 (13 HRS)						9 10 10
5		82-12	190501		1807		840.(14 HRS)						
0		82.15	190509	2.22	1802		900 (15 HRS)						
s		\$2,20	190518		1780	TEARE	960 (16 HRS)						1
		82.41	190526	1.74	1797	-	1020 (17 HRS)						
		\$2.75	190536		1805		1080 (18 HRS)						100
		82.78	190545	1.81	1810		1140 (19 HRS)		1			100	1000
	. 0	87.88	190554		1802	Teres	1200 (20 HRS)						1.
ini la	-	82.81	19057.3		IVAC	1	12/01210051						
		87.60	190581	1.07	ICN		1320 [22 March					-	depost -
-	-	21.87	190094	101	1001	-	ASAD (22 HRS)		-	-	-		12-13-14
-		03.0	100/8	0.01	1811	Ten -	1380 (23 HRS)	-	-		1		-
-		03.0 1	10010	0.36	1866	TRACE	1440 (24 HRS)	-	-		-	10	-
	8	3.08 1	90635		1801			1	-		-	10	

Sili Beads Vs Traditional Gravels

- Must handle Sili Bead bags carefully
- No observed time savings during gravel packing operations
- Sili Beads bagged in smaller bags than gravel
 potential lost time
- Uniformity of Sili Beads means no stratification in bags or annulus
- Consistent packing (Optimal?)
- No clear advantage during development
- Not readily available long lead time
- Cost \$\$\$

Pack Material Costs

Material	Cost Per Ton ¹	Cost for McLaughlin Well ²	Additional Cost for Sili		
Sili 450708 (0.066"-0.098")	\$1,406	\$108,262			
Premier 6x9	\$390	\$30,030	\$78,232		
Premier 8x16	\$362	\$27,874	\$80,388		
Cemex 6x12	\$242	\$18,643	\$91,616		
Cemex 8x16	\$197	\$15,169	\$93,093		

¹ – List Price, ² – 77 tons

Beads are 3.5-7x more than gravels

Conclusions

- Not an ideal comparison of gravel pack performance due to:
 - Changes in lithology across site
 - Inconsistent well designs
 - Water level variations throughout project
- No one pack material stood out as clearly superior in regards to constructability or development
- Monterey sands had highest specific capacity
- Sili Beads are 3.5 to 7 times the cost of other pack materials
- Supply/distribution infrastructure for Sili Beads not adequate

- Testing of all wells once equipped to define baseline performance values
- Develop standardized well performance testing protocol and schedule
- Long term program to collect and analyze well performance data
- Track cost, effort, frequency, and effectiveness of well rehabilitations

Acknowledgements

CA-NV AWWA October 23, 2018

Thomas Gee Director of Engineering -Special Facilities

Reinhard Klaus Glassbeads Product Manager

In-Situ Comparison of Water Supply Well Gravel Packs

Scott Lewis, PG Principal Geologist slewis@lsce.com

CA-NV AWWA Fall Conference October 23, 2018