

WATER LOSS CONTROL PROJECTS February 2018

Maureen Hodgins, mhodgins@waterrf.org

Search waterrf.org

WRF Project	Publication info	Project Description & Notes
<u>AMI-Meter Data</u> <u>Analytics, 4741</u>	Ongoing	A growing number of water utilities are implementing advanced metering infrastructure (AMI) to capture detailed, high-volume information from customer meters. With this expanded water usage information, utilities can better respond to customer billing questions, enforce policies for water usage and conservation, and better quantify and ultimately reduce the level of non-revenue water in their distribution systems. To realize these potential benefits, utilities need to clearly understand the improvement opportunities enabled by the AMI data, and also understand the need for new data processing and analysis tools.
		This project will investigate how AMI data can be used for maximum utility benefit. The research team will identify the strategies for AMI data analyses and provide case studies of utilities to demonstrate the value of using AMI data. The research will result in a meter performance index, which will allow utilities with AMI data to define their meter maintenance and replacement strategies based on actual meter performance. *Notes: Follow on to <i>Planning and Implementing CIS and AMR/AMI Projects</i> <u>- 4583</u> .
Assessing Water Demand Patterns to Improve Sizing of Water Meters and Service Lines - 4689	Ongoing	Oversized water meters are a common problem for utilities across North America, especially in light of the increasing implementation of water conservation and low water-using plumbing fixtures. Accurately sized water meters increase recurring utility revenue. Meter oversizing frequently results in inaccurate meter registration at low flow regimes and an underreporting of the total volume of water delivered through the meter. This problem becomes exacerbated as meters age and cumulative flow through the meter increases.
		This pilot-scale research study seeks to improve understanding of peak and off-peak water demand patterns of typical urban water customers (excluding single-family) for the purpose of more accurately and economically sizing water service lines and water meters.
Guidance on Implementing an Effective Water Loss Control Plan - 4695	Will be published 2018. Will be free to the public.	This project will create a peer-reviewed Guidance Manual and Decision Framework to help North American water utilities develop an actionable, cost-effective, and defensible water loss reduction and control plan. The research will allow utilities to develop plans that align with their strategic goals, water resource management concerns, financial concerns, and local circumstances.

Managing	For Subscribers:	This project produced a user-friendly, utility-focused guidance and a set of tools designed to
Infrastructure Risk: The	Raucher, R., J. et al.	pragmatically guide water utilities as they strive to integrate risk management principles into
Consequence of Failure	2017. <u>Managing</u>	their asset management programs. The research provides an approach and methods so that
for Buried Assets - 4451	Infrastructure Risk; The	utilities can develop and communicate a sound business case for appropriate levels and types of
	Consequence of Failure	infrastructure investment. It also developed a compendium of pipe failure impacts, in a TBL
	for Buried Assets,	framework, that will provide useful data to the whole water sector. In addition to the final
	Report 4451. Denver,	report, this project developed a data collection workbook, posted below under Web Tools.
	Colo: WRF.	Research partners: American Water, City of Los Angeles Department of Water and Power,
		Tarrant Regional Water District, Anchorage Water & Wastewater Utility, and Passaic Valley
	Free to public:	Water Commission.
	Executive Summary.	*Notes: See how to include TBL costs 2607 & Blaha and Gaweski's paper on costs of main
		breaks.
	For Subscribers: Web	For WRF Subscriber only. Helps users track financial/social/environmental costs of specific main
	Tool, Data Collection	breaks. One workbook per main break
	Workbook.	
Level 1 Water Audit	Multiple items published.	Defines and guides water utilities and regulatory entities in understanding what makes an accurate and
Validation - 4639		reliable water audit, following AWWA methodology for water audits. This project is structured to provide
		North American water utilities and regulatory entities with clear guidance and a standardized
		methodology for validation of water audit data.
	Free to public: Andrews,	*Notes: Defines level 1 validation & minimum information needed. Discusses considerations for the 20-25
	L., et al. 2016. <u>Level 1</u>	data inputs to the water audit.
	Water Audit Validation:	<u>Executive Summary</u> ,
	Guidance Manual, 4639A	
	Denver, Colo.: WRF.	
	Free to public: Andrews,	*Notes: Aimed a bit more towards the regional programmatic level. The report covers background
	L., et al. 2017. <u>Utility</u>	information such as information (abbreviated) on country or state water loss control programs and
	Water Audit Validation:	validation.
	Principles and Programs,	
	<u>4639B</u> . Denver, Colo.:	
	WRF.	The summer of this protect is to be back the Marshin American system induction of finite standard system by
Water Audits and Real	wultiple products	I ne purpose of this project is to help the North American water industry design efficient and sustainable
LOSS Component Analysis	published.	leakage control programs. The project has been divided into two segments.
- 4372		In addition, articles about this project were published in the April 2016 issue of Opflow and the February
		2016 issue of Journal AWWA. The articles are nosted below under Project Papers
	Free to public: Sturm R	Water Audits in the United States: A Review of Water Losses and Data Validity (Order #4372h)

	in the United States: A	water audit methodology) submitted to the California Urban Water Conservation Council, Georgia EPA,
	Review of Water Losses	Texas Water Development Board, Tennessee Comptroller of the Treasury, and the Delaware River Basin
	and Data Validity. 4372b.	Commission from 2011-2014. The results provide a national snapshot of water loss reporting, including an
	Denver, Colo.: WRF.	assessment of water audit validity and median results for key performance indicators.
	Free to public: Sturm, R.,	Real Loss Component Analysis: A Tool for Economic Water Loss Control (Order #4372a) provides water
	et al. 2014. <u>Real Loss</u>	utilities with an analysis tool to better understand the sources of their real water losses (reported, un-
	Component Analysis: A	reported, or background) and a means of analyzing their economic intervention strategies. This project
	Tool for Economic Water	improves the quality of standard leakage component analysis and compliments the AWWA Water Audits
	Loss Control. 4372a.	and Loss Control Program (M36), 3rd edition. In addition to the research report, the project produced
	Denver, Colo.: WRF.	two spreadsheet tools: a Leakage Component Analysis (LCA) Model and the Leak Repair Data Collection
		Guide, which are available on this project page under Project Resources/Web Tools.
		*Notes: Includes a nice literature summary of pipe breaks research.
	Free to public: Leakage	See above
	Component Analysis	
	Model	
	Free to public: Leak Repair	See above
	Data Collection Guide	
Pipe Location and Leakage	Free to public: Hughes, et	This project developed guidance and other information oriented towards use by small utility system
Management for Small	al. 2014. Pipe Location	managers in locating buried pipe and managing leaks associated with those pipes. The research
Water Systems - 4144	and Leakage Management	synthesized the project findings from case studies and other projects.
	for Small Water Systems,	*Notes: Includes template power point, under Project Resources.
	4144. Denver, Colo.: WRF.	
Pressure Management:	For Subscribers:	This project provides a better understanding of pressure management practices under both baseline and
Industry Practices and	LeChevallier, M. et al.	optimized conditions in drinking water utilities in the United States. The research presents case studies
Monitoring Procedures -	2014. Pressure	from small, medium, and large water utilities both before and after implementing the pressure
<u>4321</u>	Management: Industry	management and monitoring criteria outlined in the WRF project 4109, Criteria for Optimized Distribution
	Practices and Monitoring	Systems. The final report makes recommendations for modifications to this criteria.
	Procedures, 4321. Denver,	
	Colo.: WRF.	
	Free to public: <u>Executive</u>	
	<u>Summary</u>	
Effects of Weather on	For Subscribers only:	This project identifies the critical weather factors that can cause an adverse impact on leakage and pipe
Leakage and Bursts - 4392	Cunningham, A., et al.	breaks, quantifies the weather metrics and their impacts, and identifies early warning weather indicators.
	2013. Effects of	The project deliverables include a set of models explaining weather and break/leakage relationships that
	Weather on Leakage	can be used with forecast weather data to support water utility leakage management. The models are
	and Bursts, UKWIR	available on this project page under Project Resources/Web Tools.
	report 13/WM/08/50.	*Notes: This is an UKWIR project.
	London, UK: UK Water	

	Industry Research Limited. Free to public: Executive Summary	
<u>Continuous System Leak</u> <u>Monitoring-From Start To</u> <u>Repair - 3183</u>	For Subscribers only: Hughes, D., et al. 2011. Continuous System Acoustic Monitoring: From Start to Repair. Project #3183. Denver, Colo.: WRF. Free to public: <u>Executive</u> Summary	Evaluates the potential of a daily acoustic monitoring system to locate leaks promptly. Identifies differences in pipe, and the subsurface environment between the onset of detectable subsurface flow and the time when the leak actually surfaces. Also studies how leaks of varying types can be categorized by acoustic signature and pipe characteristics. Examines the structural characteristics of breaks captured near the time the leak starts, to gain additional insights into the dynamics of failure. *Notes: See \$1.5M California Energy Commission grant for to American Water for <u>Demonstrating</u> <u>innovative leakage reduction strategies</u> – correlating acoustic monitoring, satellite images, flow sensitive pressure reducing valves, starting 2016. (No WRF funding)
Accuracy of In-Service Water Meters at Low and High Flow Rates - 4028	Free to public: Barfuss, S., M. Johnson, and M. Neilsen. 2011. <u>Accuracy of</u> <u>In-Service Water Meters</u> <u>at Low and High Flow</u> <u>Rates</u> . 4028. Denver, Colo.: WRF.	This project tested meters of various sizes (5/8-inch to 2-inch diameter) in order to understand the changes in flow measurement accuracy with time and quantified the changes in flow measurement accuracy with exposure to particles in the distribution system as well as other degradation factors. The project also compared the actual accuracy to the current AWWA standards on low and high flow accuracy to see if in-service meters generally exceeded the new meter standards and by what margin.
<u>Leakage Management</u> <u>Technologies - 2928</u>	Free to public: Fanner, P. V., R. Sturm, J. Thornton, R. Liemberger, S. E. Davis, and T. Hoogerwerf. 2007a. Leakage Management Technologies. Project #2928. Denver, Colo.: Awwa Research Foundation.	Assesses the practicality of applying U.K. proactive leakage management techniques to North American utilities. Provides guidance to water utilities on how to practically apply promising leakage management technologies. Research partner: USEPA. *Notes: Also see M36, 4 th ed. and IWA/AWWA Free Water Audit Software published after this report.
Evaluating Water Loss and Planning Loss Reduction Strategies, - 2811.	For Subscribers: Fanner, Sturm et al. 2007. Evaluating Water Loss and Planning Loss Reduciton Strategies.	Evaluates the definition, measurement, and reporting methods for utility water losses. Provides guidance to water utilities on leakage identification, leakage control methods, and water loss management that can be used as a measure of best utility practices. Recommends use of the IWA/AWWA Water Audit Method as a best practice for North American water utilities. Includes a CD-ROM. *Notes: Also see M36, 4 th ed. and IWA/AWWA Free Water Audit Software published after this report.

Denver, Colo.: Awwa	
Free to public:	
Executive Summary	

Related to Water Loss Control or Main Breaks

Pilot Scale Demonstration	Will be published in 2018.	Studying options to balance future supply and demand using systems or catchment-level water
of the Systems Level		footprinting according to International Standard Organizations 14046. The pilot study is a water-stressed
Application of Water		area of the United Kingdom (UK). This research will help water utility companies deliver their water
Footprinting for		services more effectively by identifying opportunities for operational savings, adding customer benefit,
Sustainable Decision		and reducing environmental impacts. The project will deliver a pilot study report detailing the scope,
<u>Making - 4652</u>		methodology, and conclusions; a refined list of value propositions on the application of water
		footprinting; a refined conceptual framework/toolkit; and a guidance document.
		*Notes: Demand options include water loss control.
Epidemiologic Study of	Ongoing, expected	The general scope of work to be performed by the Centers for Disease Control and Prevention (CDC)
Health Effects Associated	completion in 2018.	involves the following activities: (1) organize and coordinate a pilot study that will allow the study team
With Low Pressure Events		and water utilities to become familiar with implementation and logistical aspects of the study, and (2)
in Drinking Water		conduct a multi-site epidemiologic study among households that receive water from five water utilities
Distribution Systems -		across the United States with sufficient statistical power to evaluate human health risks associated with
<u>4390</u>		low pressure events in drinking water distribution systems in the United States under typical conditions. (
		*Notes: Based on work by Nygard et al. in Norway that linked main breaks to health effects. Project paper
		has been published on our website, "Pilot CDC Epidemiologic Study of Low Pressure Events in Drinking
		Water Distribution System and Request for UtilityParticipants"
Effective Microbial	For Subscribers: Kirmeyer,	Provides a quantitative understanding of the value of barriers, such as chorine and chloramine, along with
Control Strategies for	G., et al. 2014. Effective	main break repair procedures and operational practices, in preventing potential customer exposure to
Main Breaks and	Microbial Control	pathogens associated with main breaks and subsequent repairs. Identified, from a utility perspective, the
Depressurization - 4307	Strategies for Main Breaks	primary factors that must be understood in order to manage the risk to customers from exposure to
	and Depressurization,	pathogens.
	4307A. Denver, Colo.:	
	WRF.	
	Free to public: Executive	
	Summary	
	For Subscribers: Good	Help field crews who are doing repairs to remember and implement good practices during repair of water
	Practices for Preventing	main breaks. The Field Pocket Guide may also be useful in utility training programs for crews involved in
	Microbial Contamination	these activities.

	of Water Mains, FIELD	
	POCKET GUIDE, 4307B	
Criteria for Optimized Distribution Systems - 4109	For Subscribers: Friedman, M.,et al. 2010 Criteria for Optimized Distribution Systems, Project 4109.Denver, Colo.: WRF.	Defines and develops a continuous improvement program based on optimization principles for water distribution system operations. Also identifies metrics to aid in determining the degree of optimization of a given system and in identifying where optimization efforts can best be focused. Research partner: Partnership for Safe Water. Published in 2010. Software tools are included with the report on CD-ROM.
	Free to public: <u>Executive</u> <u>Summary</u>	*Notes: helped develop the distribution system optimization portion of the Partnership for Safe Water. Focuses on chlorine residual, pressure management, and main breaks. Suggests goal of 15 breaks per 100 miles/year.
Susceptibility of Distribution Systems to Negative Pressure Transients - 3008	For Subscribers: Fleming, K., et al. 2006. Susceptibility of Distribution Systems to Negative Pressure Transients. Project #3008. Denver, Colo: Awwa Research Foundation. Free to public: <u>Executive</u> <u>Summary</u>	Performs hydraulic surge modeling on a variety of distribution systems. Determines the characteristics that make systems vulnerable to negative pressure transients. Tests common scenarios to develop a vulnerability ranking, evaluate mitigation approaches, and develop guidance for selecting optimum monitoring locations. Tailored Collaboration partner: American Water Works Service Company.