Upgrading Large Diameter Pipelines Under Challenging Seismic Conditions

Deborah Cohen, P.E. – Kennedy/Jenks Consultants
Calvin Huey, P.E. – San Francisco Public Utilities Commission
Nick Lazarakis, E.I.T – Kennedy/Jenks Consultants
Heather Manders, P.E. – San Francisco Public Utilities Commission
Sam Young, P.E. – San Francisco Public Utilities Commission

October 21, 2014
Presentation Outline

- Overview of SFPUC’s Water System Improvements Program (WSIP)
- Harry Tracy Water Treatment Plant (HTWTP) - Long Term Improvements Project (LTIP)
 - Design
 - Construction
- Peninsula Pipeline Seismic Upgrades (PPSU) Project
 - Design
 - Construction
SPFUC’s Water System Improvements Program (WSIP)

- **Hetch Hetchy Regional Water System**
 - Provides 260 millions gallons per day
 - To over 2.5 million Bay Area residents
 - Travels 167 miles by gravity
 - Crosses 3 faults

- **Water System Improvements Program (WSIP)**
 - $4.6 billion program
 - Seismically protect the water system
 - Assure reliable and adequate supply in case of catastrophic event or drought conditions
HARRY TRACY WATER TREATMENT PLANT – LONG TERM IMPROVEMENTS PROJECT
Harry Tracy WTP Overview

- Direct filtration plant
- Rated capacity: 140 MGD
 - Sustainable capacity: 90 MGD
 - Average Flow: 20 - 40 MGD
- Plant challenges
 - San Andreas Fault
 - Site limitations
Seismic Design Criteria

- Seismic Reliability:
 - Sustain limited damage following Maximum Credible Earthquake on San Andreas Fault
 - Deliver 140 MGD within 24 hours after event

- BSE-2 (Basic Safety Earthquake-2) per ASCE 41
 - 2,475 year return period earthquake
 - 2% occurrence in 50 years
 - Maximum Credible Earthquake of 7.9
HTWTP Pipeline Improvements

- **Treated Water (TW)**
 - Parallel to and crosses Western Fault
 - Abandon 78” TW (Line “N”) from existing reservoirs
 - New 78” TW pipe from new reservoir
 - Slipline 60” TW (Sunset Branch) with 48” pipe

- **Raw Water (RW)**
 - Crosses Eastern Fault then runs parallel to Western Fault
 - Abandon 60” RW (San Andreas No. 3 - SA#3)
 - New 72” RW
 - Above ground with piers
 - Buried
HTWTP Pipeline Improvements

- 78” TW
- 72” RW
- 66” TW Line N
- 48” TW Sunset Branch
- 72” RW
Sliplining 60” Treated Water (Sunset Branch Pipeline)

Geological Cross Section
Sliplining 60” Treated Water (Sunset Branch Pipeline)

- Existing 60” cement mortar lined and coated steel pipe
- Slipline with 48” polyeurethane lined steel pipe
 - 0.75 to 0.5-inch thick pipe
 - Butt welded joints
- 220 foot length of pipe
- 53% slope, transitioned into 33% slope
- Anchor block on top and bottom of alignment, reinforced with drilled caissons
- Slipline from either end of pipe
- Open pipe in the middle to weld
72” Treated Water (Sunset Branch)

53.3% Slope

33.0% Slope
48” Treated Water (Sunset Branch)
72” Raw Water (SA#3)

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Ground</td>
<td>• Less impact to existing pipelines</td>
<td>• Higher Cost
• Higher security risk
• Will need to coordinate with PG&E to reroute existing overhead electrical
• Change aesthetics of plant (would look like an oil refinery!)</td>
</tr>
<tr>
<td>Buried</td>
<td>• Lower cost
• Lower security risk
• Not visible</td>
<td>• More extensive maintenance
• More impact to SA3 during construction</td>
</tr>
</tbody>
</table>
72” Raw Water (SA#3)

- **Initial Design**
 - All above ground
 - Rejected due to aesthetics

- **Final Design**
 - Portion above ground with pipe saddles set on caissons
 - Transition to buried pipeline
 - 7/8-inch thick steel pipe
 - Butt welded joints
72” Raw Water (SA#3)
72” Raw Water (SA#3)
72” Raw Water (SA#3) and 60” Treated Water (Line N)
72” Raw Water (SA#3) and 60” Treated Water (Line N)
Lessons Learned During Construction

- Pipeline construction went relatively smoothly
- Complete slipline of pipeline before installation of connection points
- Consider crotch plate sizing during design, to avoid conflict with appurtenances
- Confirm existing grade/cover prior to installation
PENINSULA PIPELINE SEISMIC UPGRADE (PPSU) PROJECT
PPSU Overview

- **Project goal**
 - Increase pipeline reliability during potential seismic events
 - Improve the reliability of supply from the HTWTP to the San Pedro Valve Lot

- **Transmission Pipelines from HTWTP**
 - San Andreas No. 2 (SAPL2)
 - San Andreas No. 3 (SAPL3)
 - Sunset Branch Pipeline (SSBPL)

- **Pipelines cross the Serra Fault and Colma Valley liquefaction zones**

- **Five project sites on San Francisco Peninsula in San Mateo County**
 - Colma, South San Francisco, San Bruno and Millbrae
PPSU Project Description

- **Millbrae Site**
 - Replacement of 900 feet of 61” SSBPL
 - Crosses the Serra Fault
 - Residential area, densely covered steep slopes, golf course
 - Open trench construction

- **San Bruno South Site**
 - Replacement of 1,120 feet of 54” SAPL2 and 990 feet of 66” SAPL3
 - Crosses the Serra Fault
 - Two parallel pipelines; cross through steep slopes, active roadway, condo parking lot
 - Open trench construction
PPSU Project Description, Cont.

- **San Bruno North Site**
 - Structural support of 61” SAPL2 within an existing concrete box tunnel
 - Addition of two concrete supports within the tunnel

- **South San Francisco Site**
 - Replacement of 665 feet of 54” SAPL2
 - Colma Valley liquefaction zones
 - Trenchless technology

- **Colma Site**
 - Replacement of approximately 685 feet of 54” SAPL2
 - Colma Valley liquefaction zones
 - Open trench; crossed existing concrete culvert
Design Challenges

- Coordination with residents, golf course, condominium owner
- Location of existing pipelines
 - Inaccurate as-built drawings
 - Potholing not possible in all locations
- Strict shutdown schedule to coordinate with HTWTP construction
- Seismic conditions required design of thick-walled pipe with creative connection and trench details
Residential Improvements over R.O.W.
Thick Eucalyptus Grove over R.O.W.
Golf Course over R.O.W.
Condo Parking Lot over R.O.W.
PPSU Design

- Strengthen pipes
 - Steel pipe thicknesses up to 1-1/4 inch
 - Mostly butt-welded joints
 - Reinforced concrete-encased joints with studs
- Provide flexibility for pipe movement within trench
 - Expanded Polystyrene (EPS) Foam
 - Controlled Density Fill
 - Reinforced mudslab to support pipe
 - Gravel
 - Sand
Millbrae Site
Lessons Learned During Construction

- Confirm pipe location during design (horizontally and vertically)
- Confirm existing nearby utilities during construction
- Consider how to support pipe during construction
- Consider how to access pipe for welding during construction
- Consider width of trenches and required shoring, in relation to parallel pipes and final grades
- Consider sources of water for hydrostatic testing
Questions?

Deborah Cohen – Kennedy/Jenks Consultants
DeborahCohen@KennedyJenks.com
(415) 243-2528

Heather Manders, P.E. - SFPUC
Hmanders@sfpwater.org
(415)551-4654

Calvin Huey, P.E. – SFPUC
CHuey@sfpwater.org
(415) 554-3189

Sam Young, P.E. – SFPUC
SWYoung@sfpwater.org
(415) 551-4651

San Francisco Water Power Sewer
Services of the San Francisco Public Utilities Commission

Kennedy/Jenks Consultants