Water Hammer

Tackling Transient Events at San Jose Water Company

Jake Walsh, P.E. Andy Yang, P.E. October 21, 2014

Introduction

What is Water Hammer?

Water hammer events (transient events) are disturbances in water flow from one steady-state condition to another.

(adapted from AWWA Manual M32; Mays, Water Resources Engineering 2005 Edition)

What are Typical Causes of Water Hammer?

- Pump operations
- Valve operations
- Main breaks
- Rapid demand changes (hydrant flow)

Wave Propagation Animations

Hydraulic Transient Concerns at SJWC

Hydraulic transient related concerns at SJWC:

- Infrastructure damage
- Property damage
- Regulatory compliance
- Public safety (pipe ruptures)
- Public health (negative pressures)
- Complaints

Transient Analysis – Goals and Approach

SJWC Goals

- Verify existence and extent of problem
- Determine mitigation measures

SJWC Approach Obtain necessary knowledge and analysis tools Conduct field tests Analyze data Select surge protection devices

Background

- History of problems and mitigation efforts
- New booster pumps installed with pump control valves
- Surge tanks installed

Field Testing

- Select strategic locations to install pressure loggers
 - Pump discharge
 - High pressure regions
 - Low pressure regions
 - Dead end mains
- Coordinate with Operations department
 - Pump operations

Pump Start Up and Shut Down – Low Pressure Service

Pump Start Up and Shut Down – High Pressure Hydrant

Background — History of problems — Mitigation efforts

Field Testing

Strategic locations to install pressure loggers
Coordination with Operations department

Surge Modeling

- Calibration of existing system
- Future system (with surge protection device)

Pump Shut Off - Pump Discharge

Initial Surge Tank Sizing:

$$T_{c} = \frac{2L}{a}$$
$$T_{c} = \frac{2 \times 4,080 ft}{1,800 ft/s} = 4.5 s$$

Surge Tank Volume = $T_c \times Q$

Surge Tank Volume = $4.5 s \times 8.7 gal/s = 40 gal$

*f*JJJ

Pump Trip - 2 Pumps 50% Water / 50% Air

Pump Trip - 2 Pumps 35% Water / 65% Air

Conclusion

- Hydraulic transients are regularly occurring in water distribution systems
- Transient waves can be far more extreme than anticipated
- Transient waves propagate further than expected
- Certain surge protection devices can be very effective, others not as effective
- Surge protection devices can help mitigate potential public safety and public health concerns
- Surge modeling is highly recommended for sizing surge protection devices
- More transient analysis needs to be performed

Contact Information

Jake Walsh, P.E. Engineering Unit Manager jake.walsh@sjwater.com

Andy Yang, P.E. Associate Engineer andy.yang@sjwater.com

