Spinning Into Control:

City of Sacramento’s
New 360 mgd
Solids Handling Facilities

Ian Pietz
City of Sacramento

Tom Gillogly
Carollo Engineers
City of Sacramento WTPs

Sacramento River WTP (160 MGD)

EA Fairbairn WTP (200 MGD)

You are here

Sacramento River

American River
HISTORICAL SOLIDS HANDLING
Historical Solids Handling

Filter Waste Washwater
- fill-decant to load FWW basins
- pile-spread for solar drying to >50% solids
- Landfill Disposal

Sedimentation Basin Blowdown
- fill-decant to load Sludge Lagoons
Historical 2005-2009 Solids Production

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>EAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows (mgd)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>Max</td>
<td>122</td>
<td>112</td>
</tr>
<tr>
<td>Ave</td>
<td>63</td>
<td>57</td>
</tr>
<tr>
<td>Raw Turbidity (NTU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>225</td>
<td>178</td>
</tr>
<tr>
<td>Ave</td>
<td>13</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Historical Solids Production

<table>
<thead>
<tr>
<th>[dry ton/day]</th>
<th>SR</th>
<th>EAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>95th Percentile</td>
<td>80.7</td>
<td>23</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>6.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Historical Landfill Disposal

<table>
<thead>
<tr>
<th>[ave ton/yr]</th>
<th>Dry</th>
<th>Wet</th>
<th>% Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>1,994</td>
<td>3,527</td>
<td>56%</td>
</tr>
<tr>
<td>EAF</td>
<td>483</td>
<td>1,250</td>
<td>39%</td>
</tr>
</tbody>
</table>

- <50% pay to haul water to more expensive LF
- % solids anticipated to decrease as WTPs production increases
- Losing 1 lagoon/WTP drove $1M/yr in contract dewatering
DEWATERING SYSTEM DESIGN
When is mechanical dewatering better than solar drying?

• When there is a preference for mechanical dewatering over solar drying, and staff are OK with associated mechanical maintenance

• When site footprint available for PROPERLY SIZED solar drying bed is not available (i.e. 6 – 10 lbs/ft²/year solids loading)

• Raw water turbidity and chemical dosing is relatively high (i.e. >100 lbs/MG solids)

• When “GUARANTEED” solids dewatering capacity, throughout the year and during all seasons, is required.

• When COST of equivalent solar drying beds is greater than mechanical dewatering equipment
Residuals Handling Alternatives

- **No change**
 - Already overloaded, existing operational challenges, anticipated to get worse with time, unable to address future flows

- **Contract dewatering**
 - $52.8M_{20-yr \text{ present worth}}$

- **All mechanical**
 - $143M_ {20-yr \text{ present worth}}$ process peak events

- **Hybrid (mechanical + existing infrastructure)**
 - $68M_ {20-yr \text{ present worth}}$ $\sim 1/4^{th}$ capacity of “all mechanical” through peak storage
Hybrid Peaking at SR

- To Lagoon for Peaking
- No Peaking

Peak Storage

Mechanical Dewatering
Overview of Residuals Handling Process

- Sed. Basins
 - Thickeners (1.5%)
 - Homogenizing Tanks (3-6%)
 - Centrifuges (>20%)

- Centrifuges (3-6%)
Overview of Residuals Handling Process

Filters

Sed. Basins

Thickeners

1.5%

1.5-7%

1.5-7%

FWW Basins

Recycle to head of WTP

Homogenizing Tanks

Centrifuges

Drying

Sewer

Truck/Landfill

Truck

50-60%

>20%

0.1-1.5%

>20%
Design Basis

<table>
<thead>
<tr>
<th>Process</th>
<th>Units</th>
<th>SR</th>
<th>EAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWW Sludge Collectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>No.</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Total Area</td>
<td>ft²</td>
<td>48,000</td>
<td>46,600</td>
</tr>
<tr>
<td>Gravity Thickeners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>No.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Diameter</td>
<td>ft</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>Homogenizers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>No.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total Volume</td>
<td>gal</td>
<td>220,000</td>
<td>135,000</td>
</tr>
<tr>
<td>Centrifuges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>No.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total Capacity</td>
<td>lbs/hr</td>
<td>3,600 (+1,800)</td>
<td>1,800 (+1,800)</td>
</tr>
<tr>
<td>Total Capacity</td>
<td>gpm</td>
<td>320 (+160)</td>
<td>160 (+160)</td>
</tr>
</tbody>
</table>
NEW THICKENING & DEWATERING FACILITIES
FWW Hoseless Sludge Collectors
Gravity Thickeners

SR WTP

EAF WTP
Polymer System
Homogenizers
Five 43,200 lb/day Centrifuges
Conveyors and Off-Haul
Conveyors and Off-Haul
STARTUP AND OPTIMIZATION
Effect of Solids Loading on Cake Solids

![Graph showing the relationship between solids loading and cake solids percentage. The x-axis represents solids loading (dry lbs/hr), and the y-axis represents cake solids percentage. The data points are scattered across the graph, indicating variability in the relationship.]
Solids Loading Effect on Recovery
Effect of Feed Solids on Cake Solids
Cake Solids Across Feed Flow Range
Acrylamide Management

• US EPA limits acrylamide by Treatment Technique (potable dose ≤1 mg/L)

• Polymer to Centrifuge
 – Control Strategy 1 – Centrate to Sewer
 • No additional action
 – Control Strategy 2 – Centrate to Gravity Thickener
 • For max dose (20 lb polymer/ton) at max SR solids processing (3,600 lb solids/hr), WTP flow must be ≥51.8-mgd
 • 14-17 ug/L acrylamide in grab centrate samples (6 to 8 lbs/ton Clarifloc A-333P; 98% recovery)
 • 0 ug/L acrylamide in control (settled water)
Acknowledgements

City of SACRAMENTO

- Amy Kral
- Rod Frizzell
- Ryan Palmer
- Craig Chalmers

carollo

- Ricky Gutierrez
- Patrick Carlson
- Mark Gross
- Yifan Zhang
- Chris Cleveland
Questions?

IAN PIETZ
ipietz@cityofsacramento.org

TOM GILLOGLY
tgillogly@carollo.com