Common Stainless Steel Corrosion Problems in the Water & Desalination Industries Why They Happen & How We Can Avoid Them

AWWA Cal-Nevada Fall Conference 2013

Erin Mackey, Ph.D., P.E. Tom Seacord, P.E. Stephen Lamb

Engineers...Working Wonders With Water "

Acknowledgements

- 1. Sponsors.
 - a. Water Research Foundation.
 - b. USBR.
 - c. Eastern Municipal Water District.
- 2. Other Funding Agencies.
 - a. The Nickel Institute.
 - b. Corrosion Probe, Inc.

1. Supporting Utilities.

- a. City of Goodyear
- b. Arizona PWD
- c. Water Replenishment Dist. of Southern California
- d. Orange Cty. Water Dist.
- e. Zone 7 Water Agency
- f. City of Santa Cruz, California Water Dept.
- g. Long Beach Water Dept.
- h. Tampa Bay Water
- i. San Diego Cty. Water Auth.
- j. Irvine Ranch Water Dist.

•"

The Challenge

Printer-friendly story Read more at vcstar.com

Pump problems keep Oxnard desalter offline

By Gretchen Wenner

Monday, March 18, 2013

There's a hole where it shouldn't be. That much is for sure.

But Oxnard water officials might never know exactly what went wrong with two relatively young pumps at the city's \$30 million desalter plant.

"Corrosion science is so complicated," said Anthony Emmert, water resources manager. "It's basically as predictable as the weather."

The SST Challenge

- 1. Pick a *high enough* grade of steel to provide the required protection *but not more* than you need.
 - a. 6 grades of steel.
 - b. 120+ compositions.

2. Assemble the piping and other equipment correctly.

3. Operate it properly.

The Problem – Info Is Scattered Guidance on Selecting Materials Is Not In One Place

AWWA Standard	Description
C220	Stainless-Steel Pipe' ¹ / ₂ -inch (13 mm) and Larger
C221	Fabricated Steel Mechanical Slip-Type Expansion Joints
C223	Fabricated Steel and Stainless Steel Tapping Sleeves
C226	Stainless-Steel Fittings for Waterworks Service, Sizes ¹ / ₂ -inch – 72-inch (13 mm – 1,800 mm)
C227	Bolted, Split Sleeved Restrained and Non-restrained Couplings for Plain End Pipe
C228	Stainless Steel Pipe Flanges for Water Service, Sizes 2-inch – 72-inch (50 mm – 1,800 mm)
C230	Stainless Steel Full Encirclement Repair and Service Connection Clamps

Filename.ppt

Material Specs Are Similarly Dispersed

ASTM Standard	Description		
A240	Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications		
A312	Seamless and Welded Austenitic Stainless Steel Pipes		
A403	Wrought Austenitic Stainless Steel Piping Fittings		
A774	As-Welded Wrought Austenitic Stainless Steel Fittings for General Corrosive Service at Low and Moderate Temperatures		
A778	Welded, Unannealed Austenitic Stainless Steel Tubular Products		
A789	Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service		
A790	Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe		
A813	Single or Double Welded Austenitic Stainless Steel Pipe		
F593	Stainless Steel Bolts, Hex Cap Screws, and Studs		
F593	Stainless Steel Nuts		

And So Are Material Finish Specs

ASTM Standard	Description
A380	Cleaning, Descaling and Passivation of Stainless Steel Parts, Equipment and Systems
A967	Chemical Passivation Treatments for Stainless Steel Parts

The Solution:

"Develop a guidance document for engineers and consultants to help them properly specify the type of stainless steel most appropriate for a given water system and/or water treatment chemical system application."

> Pull the info together that explains how to pick the right steel and how to use it properly.

The Approach

1. Summarize the literature. 2. Capture what people are experiencing. 3. Fill in data gaps. 4. Develop formal guidelines.

What Is Stainless Steel?

≥12%

Protective Cr₂O₃ layer,

Steel alloy

A metallic alloy whose Cr content is >12% by weight.

For austenitic & duplex SS, Cr₂O₃ layer forms a corrosion-resistant barrier on the surface.

What Is Stainless Steel?

 $O_2 O_2 O_2 O_2 O_2 O_2$

Steel alloy @ >12% Cr

Others, e.g., martensitic and ferritic, don't have a Cr coating.

What Is Stainless Steel?

 $O_2 O_2$ O_2 O_2 O_2

≥1<u>2</u>%

Protective Cr_2O_3 layer,

Steel alloy

The basic alloys used in water treatment are 304/304L and 316/316L austenitic stainless steels.

How Does Corrosion Occur?

$O_2 O_2 O_2 O_2 O_2 O_2$

The surface becomes damaged, dirty, or otherwise compromised.

Warmer temperatures, chlorine, and chlorides speed this process up.

SPECIAL CHALLENGES FOR DESAL

Crevice Attack

An electrochemical cell forms in a tight M-to-M joint. The crevice gap dimension is critical. Cl- is a catalyst.

Pitting Attack

•CI- is attracted to anode, form M-CI, pH at bottom drops, process accelerates.

Process speeds up with increasing Cl⁻, T.

MIC Can Be a Significant Problem

- Like crevice corrosion attack.
 - a. Bacteria form a biofilm.
 - b. Becomes a tubercule.
 - c. Anodic and cathodic sites develop and a corrosion cell is formed.

Bushman & Associates, http://www.bushman.cc/corrosion_photos.html

d. Aggressive chemicals can accumulate and accelerate the rate of corrosion.

Mitigating Corrosion

STEP 1 – FIGURE OUT WHAT MATERIAL YOU NEED

Cutoffs Where Crevice Corrosion Aided by Cl⁻ &/or OCl⁻ at Ambient T. Is Unlikely

	Concentration of	of Free Chlorine i	in Feed Water	
Material	0 mg/L	2 - 3 mg/L	3 - 5 mg/l	
	Chlo	ride Concentrati	on	
304/304L	< 250 mg/L	<100 mg/L	_	
stainless steel 316/3				
310/3	hese are rules	s of thump.	рн,	
temperature, aeration, high free				
Dup chlorine, high chloride & chlorine				
Alloy mixes will influence the best choice.				
AL-6XN	15,000 mg/L	Duplex		
Ferralium 255		•		
Zeron 100	< 15,000 and up	are bes	L	
Ferralium 255	to	-		
Alloy 654Mo	20,000 mg/L			
Zeron 100;	> 20,000 mg/L			
654SMO	/ / 20,000 mg/L			

When Choosing a SST Alloy, PREN Is a Valuable Guideline

1. PREN = Pitting Resistant Equivalent Number

PREN = % Cr + 3.3(% Mo) + 16(% N)

		ТҮРЕ	PREN	
	AUSTI	ENITIC STAINLES	S STEEL	
	304/304	4L	19	
_	LDX21	.01	22	
C	Cost			
		F	PREN	
	AL6XN	J	40	
	254 SN	10	43	
	654 SMO		48	
	7% Mo		57	

PREN Provides a General Indication, Test Data Provides Empirical Support

1. \uparrow PREN = \uparrow Pitting resistance

a. $\uparrow Mo, \uparrow N, \uparrow Cr$

- 2. Combine with test data (ASTM G48 & G150)
 - a. E.g., "under X WQ, corrosion of SST followed PREN values."

There Is Limited Lab Data on the Effect of Chlorine on SST Corrosion

- Type 304/304L becomes vulnerable @ 3-5 ppm.
- 2. High conc. of chlorine \Rightarrow use higher alloyed material.

OCI -	Maximum Depth of Attack (mm)			
Resid. (mg/L	Type 304 SS (PREN = 19)		Type 316 SS (PREN = 25)	
as Cl ₂)	Base Plate	Crevice	Base Plate	Crevice
0 1	0	0	0	0
0.8-1 ¹	0	0	0	0
2.0 ¹	0	0	0	0
3 - 5 ²	<1	4-14	0	1 - 5

Notes:

- 1 Water contained 23 mg/L of chloride.
- 2 Water contains 790 mg/L of chloride.

Source: The Nickel Institute.

Mitigating Corrosion

The "Bad Actors"

- 1. Problematic welds & improper passivation.
- 2. Scratches & surface contamination.
- 3. Dissimilar metals (i.e., galvanic corrosion).
- 4. Paint/oil/tape.
- 5. MIC.
 - a. Use & disposal of construction test waters.
 - b. Sticky sediments.

Design or Fabrication Mistakes Can Be Sources of Crevice Attack

1. Human-mediated

- a. Stationary O-rings.
- b. Gasket surfaces.
- c. Non -metallic connectors.
- d. Poor root pass pipe welds.
- e. Skip welds.
- f. Paint, oil/grease, tape.
- g. Bolted joints.

Filename.ppt

Design or Fabrication Mistakes Can Be Sources of Crevice Attack

1. MIC

- a. Crustaceans.
- b. Sticky sediments.
- c. Bacterial colonies.
- d. Sediment deposits.

Bairi, George & Mudali. 2012. *Corrosion Science*, 61:19-27.

http://www.pairodocspro.com

Don't Field Weld

- 1. The best QC is in a pipe fabricator's shop.
 - a. Plan out the pipe fabrication.
 - b. Field verify dimensions.
 - c. Then build it.

- **Note:** This actually saves contractors money by not having to mobilize a certified welding crew.
- **Note:** Where field welding is allowed, purge inside the pipe with an inert gas (e.g., Ar) and passivate the welded area (inside and out) *exact procedures may vary with material type.*

Write Careful Specs and Require They Be Followed

1. Specify shipping procedures:

- a. Ship the piping material on pallets with the ends capped off with non-metallic covers.
- b. Foam and shrink wrap surfaces.
- c. Piping should not rub against each other or other non-SS surfaces.

Write Careful Specs and Require They Be Followed

- 2. Specify storage and handling procedures:
 - a. Piping should be stored on pallets, not on ground.
 - b. No iron contaminants (grinding or weld slag) should come into contact with piping.
 - c. Lift with nylon straps, not metallic chains.
- 3. Specify testing conditions for piping to incl:
 - a. Drain and dry piping so that stagnant water is not present.
 - b. Flush and drain high dose chlorinated solutions from piping immediately after disinfection testing.

Other Important Considerations.

- 1. Approaches to welding.
- 2. Parts fabrication.
- 3. Surface finishes.
- 4. Approaches to passivation & pickling.

Take-Home Message

- 1. Specifying SS is important but not always well understood in our industry.
- 2. Critical considerations include:
 - a. Nature of piping environment.
 - Cl⁻ OCl⁻, T.
 - b. Proper handling and installation.
 - Keep things clean.
 - Don't scratch the pipes.
 - c. Good maintenance to control MIC.

3. There's a lot of information to sift through.

A step-through guidance document will help us make the right decisions.

For Next Time

- 1. Guidelines.
 - a. Selection of materials.
 - b. Specification of materials.
 - Preparation.
 - Installation.
 - c. Operations & maintenance.

The comments and views detailed herein may not necessarily reflect the views of the Water Research Foundation, the USBR or their officers, directors, affiliates or agents.

Engineers...Working Wonders With Water "